RESEARCH ARTICLE

Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells

  • Chenglei Tian 1,2 ,
  • Linlin Liu 1,2 ,
  • Ming Zeng 2 ,
  • Xiaoyan Sheng 1,2 ,
  • Dai Heng 1,2 ,
  • Lingling Wang 2 ,
  • Xiaoying Ye 1,2 ,
  • David L. Keefe 3 ,
  • Lin Liu , 1,2,4
Expand
  • 1. State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
  • 2. Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
  • 3. Department of Obstetrics and Gynecology, NYU Langone Health, 550 First Avenue, New York, NY 10012, USA
  • 4. Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China

Received date: 22 May 2021

Accepted date: 20 Jun 2021

Published date: 15 Dec 2021

Copyright

2021 The Author(s)

Abstract

Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.

Cite this article

Chenglei Tian , Linlin Liu , Ming Zeng , Xiaoyan Sheng , Dai Heng , Lingling Wang , Xiaoying Ye , David L. Keefe , Lin Liu . Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells[J]. Protein & Cell, 2021 , 12(12) : 947 -964 . DOI: 10.1007/s13238-021-00865-4

1
Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13: 336- 342

DOI

2
Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018382

3
Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374- 376

DOI

4
Blasco MA, Serrano M, Fernandez-Capetillo O (2011) Genomic instability in iPS: time for a break. EMBO J 30: 991- 993

DOI

5
Buccione R, Schroeder AC, Eppig JJ (1990) Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 43: 543- 547

DOI

6
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27: 2136- 2145

DOI

7
Chuva de Sousa Lopes SM, Hayashi K, Shovlin TC, Mifsud W, Surani MA, McLaren A (2008) X chromosome activity in mouse XX primordial germ cells. PLoS Genet 4: e30

DOI

8
D’Antonio M, Benaglio P, Jakubosky D, Greenwald WW, Matsui H, Donovan MKR, Li H, Smith EN, D’Antonio-Chronowska A, Frazer KA (2018) Insights into the mutational burden of human induced pluripotent stem cells from an integrative multi-omics approach. Cell Rep 24: 883- 894

DOI

9
Davis TL, Yang GJ, McCarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9: 2885- 2894

DOI

10
De Sousa PA, Wilmut I (2007) Human parthenogenetic embryo stem cells: appreciating what you have when you have it. Cell Stem Cell 1: 243- 244

DOI

11
De Bonis ML, Ortega S, Blasco MA (2014) SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Rep 2: 690- 706

DOI

12
Didie M, Christalla P, Rubart M, Muppala V, Doker S, Unsold B, ElArmouche A, Rau T, Eschenhagen T, Schwoerer AP (2013) Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Investig 123: 1285- 1298

DOI

13
Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125- 1134

DOI

14
Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM III, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98: 6209- 6214

DOI

15
Eppig JJ, O’Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA (2009) Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum Reprod 24: 922- 928

DOI

16
Espejel S, Eckardt S, Harbell J, Roll GR, McLaughlin KJ, Willenbring H (2014) Brief report: parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells 32: 1983- 1988

DOI

17
Gao S, Zheng C, Chang G, Liu W, Kou X, Tan K, Tao L, Xu K, Wang H, Cai J (2015) Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nat Commun 6: 6318

DOI

18
Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148- 154

DOI

19
Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471: 63- 67

DOI

20
Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142: 2554- 2563

DOI

21
Hackett JA, Huang Y, Gunesdogan U, Gretarsson KA, Kobayashi T, Surani MA (2018) Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nat Commun 9: 4292

DOI

22
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117: 15- 23

DOI

23
Handel MA, Eppig JJ, Schimenti JC (2014) Applying “Gold Standards” to in-vitro-derived germ cells. Cell 159: 216

DOI

24
Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8: 1513- 1524

DOI

25
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338: 971- 975

DOI

26
Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539: 299- 303

DOI

27
Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811- 818

DOI

28
Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells 26: 1883- 1890

DOI

29
Huang K, Maruyama T, Fan G (2014) The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 15: 410- 415

DOI

30
Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160: 253- 268

DOI

31
Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, Li Z, LeDuc C, Shen Y, Stern S (2014) Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 15: 634- 642

DOI

32
Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32: 340- 353

DOI

33
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ (2017) Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546: 370- 375

DOI

34
Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, Kirby A, Daly MJ, Daley GQ (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315: 482- 486

DOI

35
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L (2009) Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 18: 2177- 2187

DOI

36
Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang XJ, Li W, Zhou Q, Hu B (2016) Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res 26: 135- 138

DOI

37
Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W, Liu G, Liu T, Lu G (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17: 999- 1007

DOI

38
Liu L, Trimarchi JR, Keefe DL (2002) Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol Reprod 66: 204- 210

DOI

39
Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci USA 101: 6496- 6501

DOI

40
Liu Z, Hu Z, Pan X, Li M, Togun TA, Tuck D, Pelizzola M, Huang J, Ye X, Yin Y (2011) Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary. Hum Mol Genet 20: 1339- 1352

DOI

41
Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L (2013) Resveratrol protects against age-associated infertility in mice. Hum Reprod 28: 707- 717

DOI

42
Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79: 530- 538

DOI

43
Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17: 1008- 1019

DOI

44
Miyauchi H, Ohta H, Nagaoka S, Nakaki F, Sasaki K, Hayashi K, Yabuta Y, Nakamura T, Yamamoto T, Saitou M (2017) Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J 36: 3100- 3119

DOI

45
Miyoshi N, Stel JM, Shioda K, Qu N, Odajima J, Mitsunaga S, Zhang X, Nagano M, Hochedlinger K, Isselbacher KJ (2016) Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells. Proc Natl Acad Sci USA 113: 9545- 9550

DOI

46
Moses RM, Kline D (1995) Calcium-independent, meiotic spindledependent metaphase-to-interphase transition in phorbol estertreated mouse eggs. Dev Biol 171: 111- 122

DOI

47
Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy:mechanisms and new insights into an age-old problem. Nat Rev Genet 13: 493- 504

DOI

48
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from earlypassage embryonic stem cells. Proc Natl Acad Sci USA 90: 8424- 8428

DOI

49
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137: 571- 584

DOI

50
Ohta H, Kurimoto K, Okamoto I, Nakamura T, Yabuta Y, Miyauchi H, Yamamoto T, Okuno Y, Hagiwara M, Shirane K (2017) In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J 36: 1888- 1907

DOI

51
Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R (2014) X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159: 1681- 1697

DOI

52
Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9: 171- 181

DOI

53
Qing T, Liu H, Wei W, Ye X, Shen W, Zhang D, Song Z, Yang W, Ding M, Deng H (2008) Mature oocytes derived from purified mouse fetal germ cells. Hum Reprod 23: 54- 61

DOI

54
Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293: 1089- 1093

DOI

55
Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9: 432- 449

DOI

56
Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532: 107- 111

DOI

57
Sagi I, De Pinho JC, Zuccaro MV, Atzmon C, Golan-Lev T, Yanuka O, Prosser R, Sadowy A, Perez G, Cabral T (2019) Distinct imprinting signatures and biased differentiation of human androgenetic and parthenogenetic embryonic stem cells. Cell Stem Cell 25: 419- 432.e419

DOI

58
SanMiguel JM, Bartolomei MS (2018) DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99: 252- 262

DOI

59
Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17: 178- 194

DOI

60
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48: 849- 862

DOI

61
Shen W, Zhang D, Qing T, Cheng J, Bai Z, Shi Y, Ding M, Deng H (2006) Live offspring produced by mouse oocytes derived from premeiotic fetal germ cells. Biol Reprod 75: 615- 623

DOI

62
Sheng X, Tian C, Liu L, Wang L, Ye X, Li J, Zeng M, Liu L (2019) Characterization of oogonia stem cells in mice by Fragilis. Protein Cell 10: 825- 831

DOI

63
Shirane K, Kurimoto K, Yabuta Y, Yamaji M, Satoh J, Ito S, Watanabe A, Hayashi K, Saitou M, Sasaki H (2016) Global landscape and regulatory principles of DNA methylation reprogramming for germ cell specification by mouse pluripotent stem cells. Dev Cell 39: 87- 103

DOI

64
Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N (2013) Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Rep 1: 79- 89

DOI

65
Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548- 550

DOI

66
Swann K, Ozil JP (1994) Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol 152: 183- 222

DOI

67
Tam PP, Zhou SX, Tan SS (1994) X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 120: 2925- 2932

DOI

68
Tapia N, Scholer HR (2016) Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell 19: 298- 309

DOI

69
Theunissen TW, Friedli M, He Y, Planet E, O’Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M (2016) Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19: 502- 515

DOI

70
Tian C, Liu L, Ye X, Fu H, Sheng X, Wang L, Wang H, Heng D, Liu L (2019) Functional oocytes derived from granulosa cells. Cell Rep 29: 4256- 4267.e4259

DOI

71
von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F, Osorno R, Dean W, Rugg-Gunn PJ, Reik W (2016) Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev Cell 39: 104- 115

DOI

72
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W (2014) Programming and inheritance of parental DNA methylomes in mammals. Cell 157: 979- 991

DOI

73
Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B (2012) Base-resolution analyses of sequence and parent-oforigin dependent DNA methylation in the mouse genome. Cell 148: 816- 831

DOI

74
Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, Yokobayashi S, Murase Y, Ishikura Y, Shirane K (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362: 356- 360

DOI

75
Yin Y, Liu N, Ye X, Guo R, Hao J, Wang F, Liu L (2014) Telomere elongation in parthenogenetic stem cells. Protein Cell 5: 8- 11

DOI

76
Yoshihara M, Araki R, Kasama Y, Sunayama M, Abe M, Nishida K, Kawaji H, Hayashizaki Y, Murakawa Y (2017) Hotspots of de novo point mutations in induced pluripotent stem cells. Cell Rep 21: 308- 315

DOI

77
Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5: 73- 83

DOI

78
Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21: 779- 786

DOI

79
Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18: 330- 340

DOI

Outlines

/