Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells
Chenglei Tian, Linlin Liu, Ming Zeng, Xiaoyan Sheng, Dai Heng, Lingling Wang, Xiaoying Ye, David L. Keefe, Lin Liu
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
parthenogenetic embryonic stem cells / primordial germ cell-like cells / imprinting / meiosis / oocytes
[1] |
Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A
CrossRef
Google scholar
|
[2] |
Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018382
|
[3] |
Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374- 376
CrossRef
Google scholar
|
[4] |
Blasco MA, Serrano M, Fernandez-Capetillo O (2011) Genomic instability in iPS: time for a break. EMBO J 30: 991- 993
CrossRef
Google scholar
|
[5] |
Buccione R, Schroeder AC, Eppig JJ (1990) Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 43: 543- 547
CrossRef
Google scholar
|
[6] |
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG
CrossRef
Google scholar
|
[7] |
Chuva de Sousa Lopes SM, Hayashi K, Shovlin TC, Mifsud W, Surani MA, McLaren A (2008) X chromosome activity in mouse XX primordial germ cells. PLoS Genet 4: e30
CrossRef
Google scholar
|
[8] |
D’Antonio M, Benaglio P, Jakubosky D, Greenwald WW, Matsui H, Donovan MKR, Li H, Smith EN, D’Antonio-Chronowska A, Frazer KA (2018) Insights into the mutational burden of human induced pluripotent stem cells from an integrative multi-omics approach. Cell Rep 24: 883- 894
CrossRef
Google scholar
|
[9] |
Davis TL, Yang GJ, McCarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9: 2885- 2894
CrossRef
Google scholar
|
[10] |
De Sousa PA, Wilmut I (2007) Human parthenogenetic embryo stem cells: appreciating what you have when you have it. Cell Stem Cell 1: 243- 244
CrossRef
Google scholar
|
[11] |
De Bonis ML, Ortega S, Blasco MA (2014) SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Rep 2: 690- 706
CrossRef
Google scholar
|
[12] |
Didie M, Christalla P, Rubart M, Muppala V, Doker S, Unsold B, ElArmouche A, Rau T, Eschenhagen T, Schwoerer AP
CrossRef
Google scholar
|
[13] |
Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R
CrossRef
Google scholar
|
[14] |
Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM III, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98: 6209- 6214
CrossRef
Google scholar
|
[15] |
Eppig JJ, O’Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA (2009) Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum Reprod 24: 922- 928
CrossRef
Google scholar
|
[16] |
Espejel S, Eckardt S, Harbell J, Roll GR, McLaughlin KJ, Willenbring H (2014) Brief report: parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells 32: 1983- 1988
CrossRef
Google scholar
|
[17] |
Gao S, Zheng C, Chang G, Liu W, Kou X, Tan K, Tao L, Xu K, Wang H, Cai J
CrossRef
Google scholar
|
[18] |
Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148- 154
CrossRef
Google scholar
|
[19] |
Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E
CrossRef
Google scholar
|
[20] |
Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142: 2554- 2563
CrossRef
Google scholar
|
[21] |
Hackett JA, Huang Y, Gunesdogan U, Gretarsson KA, Kobayashi T, Surani MA (2018) Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nat Commun 9: 4292
CrossRef
Google scholar
|
[22] |
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117: 15- 23
CrossRef
Google scholar
|
[23] |
Handel MA, Eppig JJ, Schimenti JC (2014) Applying “Gold Standards” to in-vitro-derived germ cells. Cell 159: 216
CrossRef
Google scholar
|
[24] |
Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8: 1513- 1524
CrossRef
Google scholar
|
[25] |
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338: 971- 975
CrossRef
Google scholar
|
[26] |
Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M
CrossRef
Google scholar
|
[27] |
Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811- 818
CrossRef
Google scholar
|
[28] |
Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells 26: 1883- 1890
CrossRef
Google scholar
|
[29] |
Huang K, Maruyama T, Fan G (2014) The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 15: 410- 415
CrossRef
Google scholar
|
[30] |
Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160: 253- 268
CrossRef
Google scholar
|
[31] |
Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, Li Z, LeDuc C, Shen Y, Stern S
CrossRef
Google scholar
|
[32] |
Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32: 340- 353
CrossRef
Google scholar
|
[33] |
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ
CrossRef
Google scholar
|
[34] |
Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, Kirby A, Daly MJ, Daley GQ (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315: 482- 486
CrossRef
Google scholar
|
[35] |
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L (2009) Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 18: 2177- 2187
CrossRef
Google scholar
|
[36] |
Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang XJ, Li W, Zhou Q, Hu B (2016) Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res 26: 135- 138
CrossRef
Google scholar
|
[37] |
Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W, Liu G, Liu T, Lu G (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17: 999- 1007
CrossRef
Google scholar
|
[38] |
Liu L, Trimarchi JR, Keefe DL (2002) Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol Reprod 66: 204- 210
CrossRef
Google scholar
|
[39] |
Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci USA 101: 6496- 6501
CrossRef
Google scholar
|
[40] |
Liu Z, Hu Z, Pan X, Li M, Togun TA, Tuck D, Pelizzola M, Huang J, Ye X, Yin Y
CrossRef
Google scholar
|
[41] |
Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L (2013) Resveratrol protects against age-associated infertility in mice. Hum Reprod 28: 707- 717
CrossRef
Google scholar
|
[42] |
Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79: 530- 538
CrossRef
Google scholar
|
[43] |
Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17: 1008- 1019
CrossRef
Google scholar
|
[44] |
Miyauchi H, Ohta H, Nagaoka S, Nakaki F, Sasaki K, Hayashi K, Yabuta Y, Nakamura T, Yamamoto T, Saitou M (2017) Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J 36: 3100- 3119
CrossRef
Google scholar
|
[45] |
Miyoshi N, Stel JM, Shioda K, Qu N, Odajima J, Mitsunaga S, Zhang X, Nagano M, Hochedlinger K, Isselbacher KJ
CrossRef
Google scholar
|
[46] |
Moses RM, Kline D (1995) Calcium-independent, meiotic spindledependent metaphase-to-interphase transition in phorbol estertreated mouse eggs. Dev Biol 171: 111- 122
CrossRef
Google scholar
|
[47] |
Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy:mechanisms and new insights into an age-old problem. Nat Rev Genet 13: 493- 504
CrossRef
Google scholar
|
[48] |
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from earlypassage embryonic stem cells. Proc Natl Acad Sci USA 90: 8424- 8428
CrossRef
Google scholar
|
[49] |
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137: 571- 584
CrossRef
Google scholar
|
[50] |
Ohta H, Kurimoto K, Okamoto I, Nakamura T, Yabuta Y, Miyauchi H, Yamamoto T, Okuno Y, Hagiwara M, Shirane K
CrossRef
Google scholar
|
[51] |
Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R
CrossRef
Google scholar
|
[52] |
Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9: 171- 181
CrossRef
Google scholar
|
[53] |
Qing T, Liu H, Wei W, Ye X, Shen W, Zhang D, Song Z, Yang W, Ding M, Deng H (2008) Mature oocytes derived from purified mouse fetal germ cells. Hum Reprod 23: 54- 61
CrossRef
Google scholar
|
[54] |
Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293: 1089- 1093
CrossRef
Google scholar
|
[55] |
Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9: 432- 449
CrossRef
Google scholar
|
[56] |
Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532: 107- 111
CrossRef
Google scholar
|
[57] |
Sagi I, De Pinho JC, Zuccaro MV, Atzmon C, Golan-Lev T, Yanuka O, Prosser R, Sadowy A, Perez G, Cabral T
CrossRef
Google scholar
|
[58] |
SanMiguel JM, Bartolomei MS (2018) DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99: 252- 262
CrossRef
Google scholar
|
[59] |
Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H
CrossRef
Google scholar
|
[60] |
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48: 849- 862
CrossRef
Google scholar
|
[61] |
Shen W, Zhang D, Qing T, Cheng J, Bai Z, Shi Y, Ding M, Deng H (2006) Live offspring produced by mouse oocytes derived from premeiotic fetal germ cells. Biol Reprod 75: 615- 623
CrossRef
Google scholar
|
[62] |
Sheng X, Tian C, Liu L, Wang L, Ye X, Li J, Zeng M, Liu L (2019) Characterization of oogonia stem cells in mice by Fragilis. Protein Cell 10: 825- 831
CrossRef
Google scholar
|
[63] |
Shirane K, Kurimoto K, Yabuta Y, Yamaji M, Satoh J, Ito S, Watanabe A, Hayashi K, Saitou M, Sasaki H (2016) Global landscape and regulatory principles of DNA methylation reprogramming for germ cell specification by mouse pluripotent stem cells. Dev Cell 39: 87- 103
CrossRef
Google scholar
|
[64] |
Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N (2013) Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Rep 1: 79- 89
CrossRef
Google scholar
|
[65] |
Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548- 550
CrossRef
Google scholar
|
[66] |
Swann K, Ozil JP (1994) Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol 152: 183- 222
CrossRef
Google scholar
|
[67] |
Tam PP, Zhou SX, Tan SS (1994) X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 120: 2925- 2932
CrossRef
Google scholar
|
[68] |
Tapia N, Scholer HR (2016) Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell 19: 298- 309
CrossRef
Google scholar
|
[69] |
Theunissen TW, Friedli M, He Y, Planet E, O’Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M
CrossRef
Google scholar
|
[70] |
Tian C, Liu L, Ye X, Fu H, Sheng X, Wang L, Wang H, Heng D, Liu L (2019) Functional oocytes derived from granulosa cells. Cell Rep 29: 4256- 4267.e4259
CrossRef
Google scholar
|
[71] |
von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F, Osorno R, Dean W, Rugg-Gunn PJ, Reik W (2016) Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev Cell 39: 104- 115
CrossRef
Google scholar
|
[72] |
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W
CrossRef
Google scholar
|
[73] |
Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B (2012) Base-resolution analyses of sequence and parent-oforigin dependent DNA methylation in the mouse genome. Cell 148: 816- 831
CrossRef
Google scholar
|
[74] |
Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, Yokobayashi S, Murase Y, Ishikura Y, Shirane K
CrossRef
Google scholar
|
[75] |
Yin Y, Liu N, Ye X, Guo R, Hao J, Wang F, Liu L (2014) Telomere elongation in parthenogenetic stem cells. Protein Cell 5: 8- 11
CrossRef
Google scholar
|
[76] |
Yoshihara M, Araki R, Kasama Y, Sunayama M, Abe M, Nishida K, Kawaji H, Hayashizaki Y, Murakawa Y (2017) Hotspots of de novo point mutations in induced pluripotent stem cells. Cell Rep 21: 308- 315
CrossRef
Google scholar
|
[77] |
Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5: 73- 83
CrossRef
Google scholar
|
[78] |
Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21: 779- 786
CrossRef
Google scholar
|
[79] |
Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y
CrossRef
Google scholar
|
/
〈 | 〉 |