RESEARCH ARTICLE

An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope

  • Zezhong Liu 1 ,
  • Wei Xu 1 ,
  • Zhenguo Chen 1 ,
  • Wangjun Fu 2 ,
  • Wuqiang Zhan 1 ,
  • Yidan Gao 1 ,
  • Jie Zhou 1 ,
  • Yunjiao Zhou 1 ,
  • Jianbo Wu 1 ,
  • Qian Wang 1 ,
  • Xiang Zhang 1 ,
  • Aihua Hao 1 ,
  • Wei Wu 1 ,
  • Qianqian Zhang 1 ,
  • Yaming Li 1 ,
  • Kaiyue Fan 2 ,
  • Ruihong Chen 2 ,
  • Qiaochu Jiang 1 ,
  • Christian T. Mayer 3 ,
  • Till Schoofs 4 ,
  • Youhua Xie 1 ,
  • Shibo Jiang 1 ,
  • Yumei Wen 1 ,
  • Zhenghong Yuan , 1 ,
  • Kang Wang , 2 ,
  • Lu Lu , 1 ,
  • Lei Sun , 1 ,
  • Qiao Wang , 1
Expand
  • 1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People’s Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, China
  • 2. CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
  • 4. GSK Vaccines, 1300 Wavre, Belgium

Received date: 06 Jul 2021

Accepted date: 02 Aug 2021

Published date: 15 Sep 2022

Copyright

2021 The Author(s)

Abstract

New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recog-nizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.

Cite this article

Zezhong Liu , Wei Xu , Zhenguo Chen , Wangjun Fu , Wuqiang Zhan , Yidan Gao , Jie Zhou , Yunjiao Zhou , Jianbo Wu , Qian Wang , Xiang Zhang , Aihua Hao , Wei Wu , Qianqian Zhang , Yaming Li , Kaiyue Fan , Ruihong Chen , Qiaochu Jiang , Christian T. Mayer , Till Schoofs , Youhua Xie , Shibo Jiang , Yumei Wen , Zhenghong Yuan , Kang Wang , Lu Lu , Lei Sun , Qiao Wang . An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope[J]. Protein & Cell, 2022 , 13(9) : 655 -675 . DOI: 10.1007/s13238-021-00871-6

1
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD(2018) Real-space refinement in PHENIX for cryo-EM and crystallography . Acta Crystallogr D Struct Biol 74:531–544

DOI

2
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM (2020) A potently neutralizing antibody protects mice against SARS-CoV-2 Infection . J Immunol 205:915–922

DOI

3
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M (2021) Extremely potent human monoclonal antibodies from COVID-19 convalescent patients . Cell 184:1821–1835

DOI

4
Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW(2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2 . Nature 584:353–363

DOI

5
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine . N Engl J Med 384:403–416

DOI

6
Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies . Nature 588:682–687

DOI

7
Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B (2020) REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters . Science 370:1110–1115

DOI

8
Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G (2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology . EBioMedicine 61:103104

DOI

9
Cerutti G, Rapp M, Guo Y, Bahna F, Bimela J, Reddem ER, Yu J, Wang P, Liu L, Huang Y (2021) Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies . Structure 29:655–663

DOI

10
Chen VB, Arendall 3rd WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC(2010) MolProbity: all-atom structure validation for macromolecular crystallography . Acta Crystallogr D Biol Crystallogr 66:12–21

DOI

11
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V (2021a) SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19 . N Engl J Med 384:229–237

DOI

12
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N (2021b) Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies . Nat Med 27:717–726

13
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M (2020) Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates . N Engl J Med 383:1544–1555

DOI

14
Dagotto G, Yu J, Barouch DH(2020) Approaches and challenges in SARS-CoV-2 vaccine development . Cell Host Microbe 28:364–370

DOI

15
Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Mentzer AJ, Liu C (2021) The antigenic anatomy of SARS-CoV-2 receptor binding domain . Cell 184:2183–2200

DOI

16
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S(2009) The spike protein of SARS-CoV–a target for vaccine and therapeutic development . Nat Rev Microbiol 7:226–236

DOI

17
Emsley P, Lohkamp B, Scott WG, Cowtan K(2010) Features and development of Coot . Acta Crystallogr D Biol Crystallogr 66:486–501

DOI

18
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z (2020) Development of an inactivated vaccine candidate for SARS-CoV-2 . Science 369:77–81

DOI

19
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD(2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies . Cell Host Microbe 29:463–476

DOI

20
Group A-TL-CS, Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U, Brown SM, Knowlton KU, Self WH (2021) A neutralizing monoclonal antibody for hospitalized patients with Covid-19 . N Engl J Med 384:905–914

DOI

21
Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, Cevik M(2021) Public health actions to control new SARS-CoV-2 variants . Cell 184:1127–1132

DOI

22
Gupta RK(2021) Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol 21:340–341

DOI

23
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Consortium C-GU (2021) SARS-CoV-2 variants, spike mutations and immune escape . Nat Rev Microbiol 19:409–424

DOI

24
Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation . Nat Struct Mol Biol 27:925–933

DOI

25
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia . Cancer Res 68:8049–8057

DOI

26
Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon 3rd KH, Leist SR, Schafer A, Nakajima N, Takahashi K (2020) SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo . Science 370:1464–1468

DOI

27
Kucukelbir A, Sigworth FJ, Tagare HD(2014) Quantifying the local resolution of cryo-EM density maps . Nat Methods 11:63–65

DOI

28
Koenig PA, Das H, Liu H, Kummerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD (2021) Structure-guided multivalent nanobodies block SARSCoV-2 infection and suppress mutational escape . Science. https://doi.org/10.1126/science.abe6230

DOI

29
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B (2020) Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus . Cell 182:812–827

DOI

30
Krammer F(2020) SARS-CoV-2 vaccines in development . Nature 586:516–527

DOI

31
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ (2020) SARS-CoV-2 productively infects human gut enterocytes . Science 369:50–54

DOI

32
Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A (2020a) Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike . Nature 584:450–456

DOI

33
Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, Zhou J, Wu Y, Cai X, Qu D (2020b) RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response . Signal Transduct Target Ther 5:282

DOI

34
Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ (2021) Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization . Cell Host Microbe 29:477–488

DOI

35
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant . N Engl J Med 385:585–594

DOI

36
Lurie N, Saville M, Hatchett R, Halton J(2020) Developing Covid-19 vaccines at pandemic speed . New Engl J Med 382:1969–1973

DOI

37
Mastronarde DN(2005) Automated electron microscope tomography using robust prediction of specimen movements . J Struct Biol 152:36–51

DOI

38
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant . N Engl J Med 384:1885–1898

DOI

39
Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH (2020) Single- shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques . Nature 586:583–588

DOI

40
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE(2004) UCSF Chimera–a visualization system for exploratory research and analysis . J Comput Chem 25:1605–1612

DOI

41
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W (2017) Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen . Proc Natl Acad Sci USA 114:E7348–E7357

DOI

42
Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A (2020) Crossneutralization of SARS-CoV-2 by a human monoclonal SARSCoV antibody . Nature 583:290–295

DOI

43
Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization . Nature 596:276–280

DOI

44
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR (2021) Spike mutation D614G alters SARS-CoV-2 fitness . Nature 592:116–121

DOI

45
Poland GA, Ovsyannikova IG, Kennedy RB(2020) SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates . Lancet 396:1595–1606

DOI

46
Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S (2020) Convergent antibody responses to SARS-CoV-2 in convalescent individuals . Nature 584:437–442

DOI

47
Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C, Song G, Woehl J (2020) Isolation of potent SARSCoV-2 neutralizing antibodies and protection from disease in a small animal model . Science 369:956–963

DOI

48
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L (2020) A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 . Nature 584:120–124

DOI

49
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding . Cell 182:1295–1310

DOI

50
Su S, Du L, Jiang S(2021) Learning from the past: development of safe and effective COVID-19 vaccines . Nat Rev Microbiol 19:211–219

DOI

51
Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Nutalai R, Tuekprakhon A (2021) Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera . Cell 184:2201–2211

DOI

52
Sztain T, Ahn SH, Bogetti AT, Casalino L, Goldsmith JA, McCool RS, Kearns FL, McCammon JA, McLellan JS, Chong LT (2021) A glycan gate controls opening of the SARS-CoV-2 spike protein . bioRxiv

DOI

53
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N (2021) Detection of a SARS-CoV-2 variant of concern in South Africa . Nature 592:438–443

DOI

54
Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity . Cell 184:1171–1187

DOI

55
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S (2020) Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms . Science 370(6519):950–957

DOI

56
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J (2020a) Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2 . Cell 182:713–721

DOI

57
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y (2020b) A combination of human broadly neutralizing antibodies against Hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations . Cell Host Microbe 28:335–349

DOI

58
Wang GL, Wang ZY, Duan LJ, Meng QC, Jiang MD, Cao J, Yao L, Zhu KL, Cao WC, Ma MJ(2021a) Susceptibility of circulating SARS-CoV-2 variants to neutralization . N Engl J Med 384:2354–2356

DOI

59
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD (2021b) Antibody resistance of SARSCoV-2 variants B.1.351 and B.1.1.7 . Nature 593:130–135

DOI

60
Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, Hoffmann HH, Barnes CO, Cipolla M, Ramos V (2021c) Naturally enhanced neutralizing breadth against SARSCoV-2 one year after infection . Nature 595:426–431

DOI

61
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA (2021d) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants . Nature 592:616–622

DOI

62
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TA, Rempfer C, Bordoli L,(2018) SWISS-MODEL: homology modelling of protein structures and complexes . Nucleic Acids Res 46:W296–W303

DOI

63
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J (2021) REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19 . N Engl J Med 384:238–251

DOI

64
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants . Elife 9:e61312

DOI

65
Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y(2020) Antibody-dependent enhancement of coronavirus . Int J Infect Dis 100:483–489

DOI

66
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson BE, de Oliveira T, Vermeulen M, van der Berg K (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma . Nat Med 27:622–625

DOI

67
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS(2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367:1260–1263

DOI

68
Wu F, Yan R, Liu M, Liu Z, Wang Y, Luan D, Wu K, Song Z, Sun T, Ma Y (2020) Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis . medRxiv. https://doi.org/10.1101/2020.10.08.20209114v1

DOI

69
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Res 30:343–355

DOI

70
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera . Nat Med 27:620–621

DOI

71
Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant . Cell 183:739–751

DOI

72
Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R (2021a) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera . Cell 184:2348–2361

DOI

73
Zhou Y, Liu Z, Li S, Xu W, Zhang Q, Silva IT, Li C, Wu Y, Jiang Q, Liu Z (2021b) Enhancement versus neutralization by SARSCoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD . Cell Rep 34:108699

DOI

74
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schafer A, Reidy JX, Trivette A, Nargi RS (2020) Potently neutralizing and protective human antibodies against SARS-CoV-2 . Nature 584:443–449

DOI

75
Zhang K(2016) Gctf: Real-time CTF determination and correction . J Struct Biol 193:1–12

DOI

76
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH(2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3 . Elife 7

DOI

77
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy . Nat Methods 14:331–332

DOI

Outlines

/