An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope

Zezhong Liu, Wei Xu, Zhenguo Chen, Wangjun Fu, Wuqiang Zhan, Yidan Gao, Jie Zhou, Yunjiao Zhou, Jianbo Wu, Qian Wang, Xiang Zhang, Aihua Hao, Wei Wu, Qianqian Zhang, Yaming Li, Kaiyue Fan, Ruihong Chen, Qiaochu Jiang, Christian T. Mayer, Till Schoofs, Youhua Xie, Shibo Jiang, Yumei Wen, Zhenghong Yuan, Kang Wang, Lu Lu, Lei Sun, Qiao Wang

PDF(7207 KB)
PDF(7207 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (9) : 655-675. DOI: 10.1007/s13238-021-00871-6
RESEARCH ARTICLE
RESEARCH ARTICLE

An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope

Author information +
History +

Abstract

New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recog-nizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.

Keywords

SARS-CoV-2 / neutralizing antibody / receptor-binding domain / XG014 / antibody-dependent cell-cell fusion

Cite this article

Download citation ▾
Zezhong Liu, Wei Xu, Zhenguo Chen, Wangjun Fu, Wuqiang Zhan, Yidan Gao, Jie Zhou, Yunjiao Zhou, Jianbo Wu, Qian Wang, Xiang Zhang, Aihua Hao, Wei Wu, Qianqian Zhang, Yaming Li, Kaiyue Fan, Ruihong Chen, Qiaochu Jiang, Christian T. Mayer, Till Schoofs, Youhua Xie, Shibo Jiang, Yumei Wen, Zhenghong Yuan, Kang Wang, Lu Lu, Lei Sun, Qiao Wang. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein Cell, 2022, 13(9): 655‒675 https://doi.org/10.1007/s13238-021-00871-6

References

[1]
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD(2018) Real-space refinement in PHENIX for cryo-EM and crystallography . Acta Crystallogr D Struct Biol 74:531–544
CrossRef Google scholar
[2]
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM (2020) A potently neutralizing antibody protects mice against SARS-CoV-2 Infection . J Immunol 205:915–922
CrossRef Google scholar
[3]
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M (2021) Extremely potent human monoclonal antibodies from COVID-19 convalescent patients . Cell 184:1821–1835
CrossRef Google scholar
[4]
Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW(2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2 . Nature 584:353–363
CrossRef Google scholar
[5]
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine . N Engl J Med 384:403–416
CrossRef Google scholar
[6]
Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies . Nature 588:682–687
CrossRef Google scholar
[7]
Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B (2020) REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters . Science 370:1110–1115
CrossRef Google scholar
[8]
Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G (2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology . EBioMedicine 61:103104
CrossRef Google scholar
[9]
Cerutti G, Rapp M, Guo Y, Bahna F, Bimela J, Reddem ER, Yu J, Wang P, Liu L, Huang Y (2021) Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies . Structure 29:655–663
CrossRef Google scholar
[10]
Chen VB, Arendall 3rd WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC(2010) MolProbity: all-atom structure validation for macromolecular crystallography . Acta Crystallogr D Biol Crystallogr 66:12–21
CrossRef Google scholar
[11]
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V (2021a) SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19 . N Engl J Med 384:229–237
CrossRef Google scholar
[12]
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N (2021b) Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies . Nat Med 27:717–726
[13]
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M (2020) Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates . N Engl J Med 383:1544–1555
CrossRef Google scholar
[14]
Dagotto G, Yu J, Barouch DH(2020) Approaches and challenges in SARS-CoV-2 vaccine development . Cell Host Microbe 28:364–370
CrossRef Google scholar
[15]
Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Mentzer AJ, Liu C (2021) The antigenic anatomy of SARS-CoV-2 receptor binding domain . Cell 184:2183–2200
CrossRef Google scholar
[16]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S(2009) The spike protein of SARS-CoV–a target for vaccine and therapeutic development . Nat Rev Microbiol 7:226–236
CrossRef Google scholar
[17]
Emsley P, Lohkamp B, Scott WG, Cowtan K(2010) Features and development of Coot . Acta Crystallogr D Biol Crystallogr 66:486–501
CrossRef Google scholar
[18]
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z (2020) Development of an inactivated vaccine candidate for SARS-CoV-2 . Science 369:77–81
CrossRef Google scholar
[19]
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD(2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies . Cell Host Microbe 29:463–476
CrossRef Google scholar
[20]
Group A-TL-CS, Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U, Brown SM, Knowlton KU, Self WH (2021) A neutralizing monoclonal antibody for hospitalized patients with Covid-19 . N Engl J Med 384:905–914
CrossRef Google scholar
[21]
Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, Cevik M(2021) Public health actions to control new SARS-CoV-2 variants . Cell 184:1127–1132
CrossRef Google scholar
[22]
Gupta RK(2021) Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol 21:340–341
CrossRef Google scholar
[23]
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Consortium C-GU (2021) SARS-CoV-2 variants, spike mutations and immune escape . Nat Rev Microbiol 19:409–424
CrossRef Google scholar
[24]
Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation . Nat Struct Mol Biol 27:925–933
CrossRef Google scholar
[25]
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia . Cancer Res 68:8049–8057
CrossRef Google scholar
[26]
Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon 3rd KH, Leist SR, Schafer A, Nakajima N, Takahashi K (2020) SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo . Science 370:1464–1468
CrossRef Google scholar
[27]
Kucukelbir A, Sigworth FJ, Tagare HD(2014) Quantifying the local resolution of cryo-EM density maps . Nat Methods 11:63–65
CrossRef Google scholar
[28]
Koenig PA, Das H, Liu H, Kummerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD (2021) Structure-guided multivalent nanobodies block SARSCoV-2 infection and suppress mutational escape . Science. https://doi.org/10.1126/science.abe6230
CrossRef Google scholar
[29]
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B (2020) Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus . Cell 182:812–827
CrossRef Google scholar
[30]
Krammer F(2020) SARS-CoV-2 vaccines in development . Nature 586:516–527
CrossRef Google scholar
[31]
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ (2020) SARS-CoV-2 productively infects human gut enterocytes . Science 369:50–54
CrossRef Google scholar
[32]
Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A (2020a) Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike . Nature 584:450–456
CrossRef Google scholar
[33]
Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, Zhou J, Wu Y, Cai X, Qu D (2020b) RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response . Signal Transduct Target Ther 5:282
CrossRef Google scholar
[34]
Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ (2021) Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization . Cell Host Microbe 29:477–488
CrossRef Google scholar
[35]
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant . N Engl J Med 385:585–594
CrossRef Google scholar
[36]
Lurie N, Saville M, Hatchett R, Halton J(2020) Developing Covid-19 vaccines at pandemic speed . New Engl J Med 382:1969–1973
CrossRef Google scholar
[37]
Mastronarde DN(2005) Automated electron microscope tomography using robust prediction of specimen movements . J Struct Biol 152:36–51
CrossRef Google scholar
[38]
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant . N Engl J Med 384:1885–1898
CrossRef Google scholar
[39]
Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH (2020) Single- shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques . Nature 586:583–588
CrossRef Google scholar
[40]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE(2004) UCSF Chimera–a visualization system for exploratory research and analysis . J Comput Chem 25:1605–1612
CrossRef Google scholar
[41]
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W (2017) Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen . Proc Natl Acad Sci USA 114:E7348–E7357
CrossRef Google scholar
[42]
Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A (2020) Crossneutralization of SARS-CoV-2 by a human monoclonal SARSCoV antibody . Nature 583:290–295
CrossRef Google scholar
[43]
Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization . Nature 596:276–280
CrossRef Google scholar
[44]
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR (2021) Spike mutation D614G alters SARS-CoV-2 fitness . Nature 592:116–121
CrossRef Google scholar
[45]
Poland GA, Ovsyannikova IG, Kennedy RB(2020) SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates . Lancet 396:1595–1606
CrossRef Google scholar
[46]
Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S (2020) Convergent antibody responses to SARS-CoV-2 in convalescent individuals . Nature 584:437–442
CrossRef Google scholar
[47]
Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C, Song G, Woehl J (2020) Isolation of potent SARSCoV-2 neutralizing antibodies and protection from disease in a small animal model . Science 369:956–963
CrossRef Google scholar
[48]
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L (2020) A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 . Nature 584:120–124
CrossRef Google scholar
[49]
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding . Cell 182:1295–1310
CrossRef Google scholar
[50]
Su S, Du L, Jiang S(2021) Learning from the past: development of safe and effective COVID-19 vaccines . Nat Rev Microbiol 19:211–219
CrossRef Google scholar
[51]
Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Nutalai R, Tuekprakhon A (2021) Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera . Cell 184:2201–2211
CrossRef Google scholar
[52]
Sztain T, Ahn SH, Bogetti AT, Casalino L, Goldsmith JA, McCool RS, Kearns FL, McCammon JA, McLellan JS, Chong LT (2021) A glycan gate controls opening of the SARS-CoV-2 spike protein . bioRxiv
CrossRef Google scholar
[53]
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N (2021) Detection of a SARS-CoV-2 variant of concern in South Africa . Nature 592:438–443
CrossRef Google scholar
[54]
Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity . Cell 184:1171–1187
CrossRef Google scholar
[55]
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S (2020) Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms . Science 370(6519):950–957
CrossRef Google scholar
[56]
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J (2020a) Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2 . Cell 182:713–721
CrossRef Google scholar
[57]
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y (2020b) A combination of human broadly neutralizing antibodies against Hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations . Cell Host Microbe 28:335–349
CrossRef Google scholar
[58]
Wang GL, Wang ZY, Duan LJ, Meng QC, Jiang MD, Cao J, Yao L, Zhu KL, Cao WC, Ma MJ(2021a) Susceptibility of circulating SARS-CoV-2 variants to neutralization . N Engl J Med 384:2354–2356
CrossRef Google scholar
[59]
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD (2021b) Antibody resistance of SARSCoV-2 variants B.1.351 and B.1.1.7 . Nature 593:130–135
CrossRef Google scholar
[60]
Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, Hoffmann HH, Barnes CO, Cipolla M, Ramos V (2021c) Naturally enhanced neutralizing breadth against SARSCoV-2 one year after infection . Nature 595:426–431
CrossRef Google scholar
[61]
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA (2021d) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants . Nature 592:616–622
CrossRef Google scholar
[62]
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TA, Rempfer C, Bordoli L,(2018) SWISS-MODEL: homology modelling of protein structures and complexes . Nucleic Acids Res 46:W296–W303
CrossRef Google scholar
[63]
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J (2021) REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19 . N Engl J Med 384:238–251
CrossRef Google scholar
[64]
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants . Elife 9:e61312
CrossRef Google scholar
[65]
Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y(2020) Antibody-dependent enhancement of coronavirus . Int J Infect Dis 100:483–489
CrossRef Google scholar
[66]
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson BE, de Oliveira T, Vermeulen M, van der Berg K (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma . Nat Med 27:622–625
CrossRef Google scholar
[67]
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS(2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367:1260–1263
CrossRef Google scholar
[68]
Wu F, Yan R, Liu M, Liu Z, Wang Y, Luan D, Wu K, Song Z, Sun T, Ma Y (2020) Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis . medRxiv. https://doi.org/10.1101/2020.10.08.20209114v1
CrossRef Google scholar
[69]
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Res 30:343–355
CrossRef Google scholar
[70]
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera . Nat Med 27:620–621
CrossRef Google scholar
[71]
Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant . Cell 183:739–751
CrossRef Google scholar
[72]
Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R (2021a) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera . Cell 184:2348–2361
CrossRef Google scholar
[73]
Zhou Y, Liu Z, Li S, Xu W, Zhang Q, Silva IT, Li C, Wu Y, Jiang Q, Liu Z (2021b) Enhancement versus neutralization by SARSCoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD . Cell Rep 34:108699
CrossRef Google scholar
[74]
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schafer A, Reidy JX, Trivette A, Nargi RS (2020) Potently neutralizing and protective human antibodies against SARS-CoV-2 . Nature 584:443–449
CrossRef Google scholar
[75]
Zhang K(2016) Gctf: Real-time CTF determination and correction . J Struct Biol 193:1–12
CrossRef Google scholar
[76]
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH(2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3 . Elife 7
CrossRef Google scholar
[77]
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy . Nat Methods 14:331–332
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(7207 KB)

Accesses

Citations

Detail

Sections
Recommended

/