An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope
Zezhong Liu, Wei Xu, Zhenguo Chen, Wangjun Fu, Wuqiang Zhan, Yidan Gao, Jie Zhou, Yunjiao Zhou, Jianbo Wu, Qian Wang, Xiang Zhang, Aihua Hao, Wei Wu, Qianqian Zhang, Yaming Li, Kaiyue Fan, Ruihong Chen, Qiaochu Jiang, Christian T. Mayer, Till Schoofs, Youhua Xie, Shibo Jiang, Yumei Wen, Zhenghong Yuan, Kang Wang, Lu Lu, Lei Sun, Qiao Wang
An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recog-nizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
SARS-CoV-2 / neutralizing antibody / receptor-binding domain / XG014 / antibody-dependent cell-cell fusion
[1] |
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD(2018) Real-space refinement in PHENIX for cryo-EM and crystallography . Acta Crystallogr D Struct Biol 74:531–544
CrossRef
Google scholar
|
[2] |
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM
CrossRef
Google scholar
|
[3] |
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M
CrossRef
Google scholar
|
[4] |
Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW(2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2 . Nature 584:353–363
CrossRef
Google scholar
|
[5] |
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB
CrossRef
Google scholar
|
[6] |
Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE
CrossRef
Google scholar
|
[7] |
Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B
CrossRef
Google scholar
|
[8] |
Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G
CrossRef
Google scholar
|
[9] |
Cerutti G, Rapp M, Guo Y, Bahna F, Bimela J, Reddem ER, Yu J, Wang P, Liu L, Huang Y
CrossRef
Google scholar
|
[10] |
Chen VB, Arendall 3rd WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC(2010) MolProbity: all-atom structure validation for macromolecular crystallography . Acta Crystallogr D Biol Crystallogr 66:12–21
CrossRef
Google scholar
|
[11] |
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V
CrossRef
Google scholar
|
[12] |
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N
|
[13] |
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M
CrossRef
Google scholar
|
[14] |
Dagotto G, Yu J, Barouch DH(2020) Approaches and challenges in SARS-CoV-2 vaccine development . Cell Host Microbe 28:364–370
CrossRef
Google scholar
|
[15] |
Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Mentzer AJ, Liu C
CrossRef
Google scholar
|
[16] |
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S(2009) The spike protein of SARS-CoV–a target for vaccine and therapeutic development . Nat Rev Microbiol 7:226–236
CrossRef
Google scholar
|
[17] |
Emsley P, Lohkamp B, Scott WG, Cowtan K(2010) Features and development of Coot . Acta Crystallogr D Biol Crystallogr 66:486–501
CrossRef
Google scholar
|
[18] |
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z
CrossRef
Google scholar
|
[19] |
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD(2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies . Cell Host Microbe 29:463–476
CrossRef
Google scholar
|
[20] |
Group A-TL-CS, Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U, Brown SM, Knowlton KU, Self WH
CrossRef
Google scholar
|
[21] |
Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, Cevik M(2021) Public health actions to control new SARS-CoV-2 variants . Cell 184:1127–1132
CrossRef
Google scholar
|
[22] |
Gupta RK(2021) Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol 21:340–341
CrossRef
Google scholar
|
[23] |
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Consortium C-GU
CrossRef
Google scholar
|
[24] |
Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL
CrossRef
Google scholar
|
[25] |
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R
CrossRef
Google scholar
|
[26] |
Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon 3rd KH, Leist SR, Schafer A, Nakajima N, Takahashi K
CrossRef
Google scholar
|
[27] |
Kucukelbir A, Sigworth FJ, Tagare HD(2014) Quantifying the local resolution of cryo-EM density maps . Nat Methods 11:63–65
CrossRef
Google scholar
|
[28] |
Koenig PA, Das H, Liu H, Kummerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD
CrossRef
Google scholar
|
[29] |
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B
CrossRef
Google scholar
|
[30] |
Krammer F(2020) SARS-CoV-2 vaccines in development . Nature 586:516–527
CrossRef
Google scholar
|
[31] |
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ
CrossRef
Google scholar
|
[32] |
Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A
CrossRef
Google scholar
|
[33] |
Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, Zhou J, Wu Y, Cai X, Qu D
CrossRef
Google scholar
|
[34] |
Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ
CrossRef
Google scholar
|
[35] |
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G
CrossRef
Google scholar
|
[36] |
Lurie N, Saville M, Hatchett R, Halton J(2020) Developing Covid-19 vaccines at pandemic speed . New Engl J Med 382:1969–1973
CrossRef
Google scholar
|
[37] |
Mastronarde DN(2005) Automated electron microscope tomography using robust prediction of specimen movements . J Struct Biol 152:36–51
CrossRef
Google scholar
|
[38] |
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE
CrossRef
Google scholar
|
[39] |
Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH
CrossRef
Google scholar
|
[40] |
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE(2004) UCSF Chimera–a visualization system for exploratory research and analysis . J Comput Chem 25:1605–1612
CrossRef
Google scholar
|
[41] |
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W
CrossRef
Google scholar
|
[42] |
Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A
CrossRef
Google scholar
|
[43] |
Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J
CrossRef
Google scholar
|
[44] |
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR
CrossRef
Google scholar
|
[45] |
Poland GA, Ovsyannikova IG, Kennedy RB(2020) SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates . Lancet 396:1595–1606
CrossRef
Google scholar
|
[46] |
Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S
CrossRef
Google scholar
|
[47] |
Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C, Song G, Woehl J
CrossRef
Google scholar
|
[48] |
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L
CrossRef
Google scholar
|
[49] |
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC
CrossRef
Google scholar
|
[50] |
Su S, Du L, Jiang S(2021) Learning from the past: development of safe and effective COVID-19 vaccines . Nat Rev Microbiol 19:211–219
CrossRef
Google scholar
|
[51] |
Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Nutalai R, Tuekprakhon A
CrossRef
Google scholar
|
[52] |
Sztain T, Ahn SH, Bogetti AT, Casalino L, Goldsmith JA, McCool RS, Kearns FL, McCammon JA, McLellan JS, Chong LT
CrossRef
Google scholar
|
[53] |
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N
CrossRef
Google scholar
|
[54] |
Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J
CrossRef
Google scholar
|
[55] |
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S
CrossRef
Google scholar
|
[56] |
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J
CrossRef
Google scholar
|
[57] |
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y
CrossRef
Google scholar
|
[58] |
Wang GL, Wang ZY, Duan LJ, Meng QC, Jiang MD, Cao J, Yao L, Zhu KL, Cao WC, Ma MJ(2021a) Susceptibility of circulating SARS-CoV-2 variants to neutralization . N Engl J Med 384:2354–2356
CrossRef
Google scholar
|
[59] |
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD
CrossRef
Google scholar
|
[60] |
Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, Hoffmann HH, Barnes CO, Cipolla M, Ramos V
CrossRef
Google scholar
|
[61] |
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA
CrossRef
Google scholar
|
[62] |
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TA, Rempfer C, Bordoli L,
CrossRef
Google scholar
|
[63] |
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J
CrossRef
Google scholar
|
[64] |
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E
CrossRef
Google scholar
|
[65] |
Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y(2020) Antibody-dependent enhancement of coronavirus . Int J Infect Dis 100:483–489
CrossRef
Google scholar
|
[66] |
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson BE, de Oliveira T, Vermeulen M, van der Berg K
CrossRef
Google scholar
|
[67] |
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS(2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367:1260–1263
CrossRef
Google scholar
|
[68] |
Wu F, Yan R, Liu M, Liu Z, Wang Y, Luan D, Wu K, Song Z, Sun T, Ma Y
CrossRef
Google scholar
|
[69] |
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S
CrossRef
Google scholar
|
[70] |
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D
CrossRef
Google scholar
|
[71] |
Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C
CrossRef
Google scholar
|
[72] |
Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R
CrossRef
Google scholar
|
[73] |
Zhou Y, Liu Z, Li S, Xu W, Zhang Q, Silva IT, Li C, Wu Y, Jiang Q, Liu Z
CrossRef
Google scholar
|
[74] |
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schafer A, Reidy JX, Trivette A, Nargi RS
CrossRef
Google scholar
|
[75] |
Zhang K(2016) Gctf: Real-time CTF determination and correction . J Struct Biol 193:1–12
CrossRef
Google scholar
|
[76] |
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH(2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3 . Elife 7
CrossRef
Google scholar
|
[77] |
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy . Nat Methods 14:331–332
CrossRef
Google scholar
|
/
〈 | 〉 |