LETTER

Precise genome editing without exogenous donor DNA via retron editing system in human cells

  • Xiangfeng Kong , 1 ,
  • Zikang Wang 2 ,
  • Renxia Zhang 2,3 ,
  • Xing Wang 1 ,
  • Yingsi Zhou 2 ,
  • Linyu Shi 1 ,
  • Hui Yang , 2,4
Expand
  • 1. HUIGENE Therapeutics Inc., Shanghai 200131, China
  • 2. Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
  • 3. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4. Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China

Accepted date: 26 Jun 2021

Published date: 15 Nov 2021

Copyright

2021 The Author(s)

Cite this article

Xiangfeng Kong , Zikang Wang , Renxia Zhang , Xing Wang , Yingsi Zhou , Linyu Shi , Hui Yang . Precise genome editing without exogenous donor DNA via retron editing system in human cells[J]. Protein & Cell, 2021 , 12(11) : 899 -902 . DOI: 10.1007/s13238-021-00862-7

1
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A(2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149

DOI

2
Cox DB, Platt RJ, Zhang F(2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131

DOI

3
Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S(1987) Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51:1105–1112

DOI

4
Gao C(2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

DOI

5
Hsu MY, Inouye S, Inouye M(1989) Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus. J Biol Chem 264:6214–6219

DOI

6
Lim H, Jun S, Park M, Lim J, Jeong J, Lee JH, Bang D(2020) Multiplex generation, tracking, and functional screening of substitution mutants using a CRISPR/retron system. ACS Synth Biol 9:1003–1009

DOI

7
Mao YF, Botella JR, Liu YG, Zhu JK(2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6:421–437

DOI

8
Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, Oppenheimer-Shaanan Y, Sorek R(2020) Bacterial retrons function in anti-phage defense. Cell 183:1551–1561

DOI

9
Mirochnitchenko O, Inouye S, Inouye M(1994) Production of singlestranded DNA in mammalian cells by means of a bacterial retron. J Biol Chem 269:2380–2383

DOI

10
Rees HA, Yeh WH, Liu DR(2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10:2212

DOI

11
Schubert MG, Goodman DB, Wannier TM, Kaur D, Farzadfard F, Lu TK, Shipman SL, Church GM(2021) High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc Natl Acad Sci USA 118:18

DOI

12
Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB(2018) Functional genetic variants revealed by massively parallel precise genome editing. Cell 175:544–557

DOI

13
Simon AJ, Ellington AD, Finkelstein IJ(2019) Retrons and their applications in genome engineering. Nucleic Acids Res 47:11007–11019

DOI

14
Yee T, Furuichi T, Inouye S, Inouye M(1984) Multicopy singlestranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38:203–209

DOI

15
Zhao B, Chen S-AA, Lee J, Fraser HB(2021) Bacterial retrons enable precise gene editing in human cells. BioRxiv. https://doi. org/10.1101/2021.03.29.437260

DOI

Outlines

/