Precise genome editing without exogenous donor DNA via retron editing system in human cells

Xiangfeng Kong , Zikang Wang , Renxia Zhang , Xing Wang , Yingsi Zhou , Linyu Shi , Hui Yang

Protein Cell ›› 2021, Vol. 12 ›› Issue (11) : 899 -902.

PDF (763KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (11) : 899 -902. DOI: 10.1007/s13238-021-00862-7
LETTER
LETTER

Precise genome editing without exogenous donor DNA via retron editing system in human cells

Author information +
History +
PDF (763KB)

Cite this article

Download citation ▾
Xiangfeng Kong, Zikang Wang, Renxia Zhang, Xing Wang, Yingsi Zhou, Linyu Shi, Hui Yang. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell, 2021, 12(11): 899-902 DOI:10.1007/s13238-021-00862-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A(2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149

[2]

Cox DB, Platt RJ, Zhang F(2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131

[3]

Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S(1987) Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51:1105–1112

[4]

Gao C(2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

[5]

Hsu MY, Inouye S, Inouye M(1989) Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus. J Biol Chem 264:6214–6219

[6]

Lim H, Jun S, Park M, Lim J, Jeong J, Lee JH, Bang D(2020) Multiplex generation, tracking, and functional screening of substitution mutants using a CRISPR/retron system. ACS Synth Biol 9:1003–1009

[7]

Mao YF, Botella JR, Liu YG, Zhu JK(2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6:421–437

[8]

Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, Oppenheimer-Shaanan Y, Sorek R(2020) Bacterial retrons function in anti-phage defense. Cell 183:1551–1561

[9]

Mirochnitchenko O, Inouye S, Inouye M(1994) Production of singlestranded DNA in mammalian cells by means of a bacterial retron. J Biol Chem 269:2380–2383

[10]

Rees HA, Yeh WH, Liu DR(2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10:2212

[11]

Schubert MG, Goodman DB, Wannier TM, Kaur D, Farzadfard F, Lu TK, Shipman SL, Church GM(2021) High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc Natl Acad Sci USA 118:18

[12]

Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB(2018) Functional genetic variants revealed by massively parallel precise genome editing. Cell 175:544–557

[13]

Simon AJ, Ellington AD, Finkelstein IJ(2019) Retrons and their applications in genome engineering. Nucleic Acids Res 47:11007–11019

[14]

Yee T, Furuichi T, Inouye S, Inouye M(1984) Multicopy singlestranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38:203–209

[15]

Zhao B, Chen S-AA, Lee J, Fraser HB(2021) Bacterial retrons enable precise gene editing in human cells. BioRxiv.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (763KB)

Supplementary files

PAC-0898-21273-YH_suppl_1

601

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/