Precise genome editing without exogenous donor DNA via retron editing system in human cells

Xiangfeng Kong, Zikang Wang, Renxia Zhang, Xing Wang, Yingsi Zhou, Linyu Shi, Hui Yang

PDF(763 KB)
PDF(763 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (11) : 899-902. DOI: 10.1007/s13238-021-00862-7
LETTER
LETTER

Precise genome editing without exogenous donor DNA via retron editing system in human cells

Author information +
History +

Cite this article

Download citation ▾
Xiangfeng Kong, Zikang Wang, Renxia Zhang, Xing Wang, Yingsi Zhou, Linyu Shi, Hui Yang. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell, 2021, 12(11): 899‒902 https://doi.org/10.1007/s13238-021-00862-7

References

[1]
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A(2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149
CrossRef Google scholar
[2]
Cox DB, Platt RJ, Zhang F(2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131
CrossRef Google scholar
[3]
Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S(1987) Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51:1105–1112
CrossRef Google scholar
[4]
Gao C(2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635
CrossRef Google scholar
[5]
Hsu MY, Inouye S, Inouye M(1989) Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus. J Biol Chem 264:6214–6219
CrossRef Google scholar
[6]
Lim H, Jun S, Park M, Lim J, Jeong J, Lee JH, Bang D(2020) Multiplex generation, tracking, and functional screening of substitution mutants using a CRISPR/retron system. ACS Synth Biol 9:1003–1009
CrossRef Google scholar
[7]
Mao YF, Botella JR, Liu YG, Zhu JK(2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6:421–437
CrossRef Google scholar
[8]
Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, Oppenheimer-Shaanan Y, Sorek R(2020) Bacterial retrons function in anti-phage defense. Cell 183:1551–1561
CrossRef Google scholar
[9]
Mirochnitchenko O, Inouye S, Inouye M(1994) Production of singlestranded DNA in mammalian cells by means of a bacterial retron. J Biol Chem 269:2380–2383
CrossRef Google scholar
[10]
Rees HA, Yeh WH, Liu DR(2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10:2212
CrossRef Google scholar
[11]
Schubert MG, Goodman DB, Wannier TM, Kaur D, Farzadfard F, Lu TK, Shipman SL, Church GM(2021) High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc Natl Acad Sci USA 118:18
CrossRef Google scholar
[12]
Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB(2018) Functional genetic variants revealed by massively parallel precise genome editing. Cell 175:544–557
CrossRef Google scholar
[13]
Simon AJ, Ellington AD, Finkelstein IJ(2019) Retrons and their applications in genome engineering. Nucleic Acids Res 47:11007–11019
CrossRef Google scholar
[14]
Yee T, Furuichi T, Inouye S, Inouye M(1984) Multicopy singlestranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38:203–209
CrossRef Google scholar
[15]
Zhao B, Chen S-AA, Lee J, Fraser HB(2021) Bacterial retrons enable precise gene editing in human cells. BioRxiv. https://doi. org/10.1101/2021.03.29.437260
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(763 KB)

Accesses

Citations

Detail

Sections
Recommended

/