Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos
Received date: 03 Mar 2021
Accepted date: 18 Mar 2021
Published date: 15 Jun 2021
Copyright
N6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.
Key words: YTHDC1; LINE1-scaffold complex; 2-cell; retrotransposons; H3K9me3
Chuan Chen , Wenqiang Liu , Jiayin Guo , Yuanyuan Liu , Xuelian Liu , Jun Liu , Xiaoyang Dou , Rongrong Le , Yixin Huang , Chong Li , Lingyue Yang , Xiaochen Kou , Yanhong Zhao , You Wu , Jiayu Chen , Hong Wang , Bin Shen , Yawei Gao , Shaorong Gao . Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos[J]. Protein & Cell, 2021 , 12(6) : 455 -474 . DOI: 10.1007/s13238-021-00837-8
1 |
Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K
|
2 |
Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC (2015) An ultra-low-input native ChIP-seq protocol for genomewide profiling of rare cell populations. Nat Commun 6:6033
|
3 |
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S,Bourc’his D (2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature 591(7849):312–316
|
4 |
Chen T, Hao YJ, Zhang Y,Li MM, Wang M, Han W, Wu Y, Lv Y,Hao J, Wang L
|
5 |
De Iaco A, Planet E, Coluccio A, Verp S, Duc J,Trono D (2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet 49:941–945
|
6 |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S,Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J,Amariglio N, Kupiec M
|
7 |
Geula S, Moshitch-Moshkovitz S, Dominissini D
|
8 |
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589
|
9 |
Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O’Carroll D (2017) The RNA m (6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell 67(1059–1067):
|
10 |
Iyengar S, Ivanov AV, Jin VX
|
11 |
Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres- Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49:1502–1510
|
12 |
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:
|
13 |
Kent WJ, Zweig AS, Barber G,Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207
|
14 |
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
|
15 |
Li X, Fu XD (2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20:503–519
|
16 |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,Durbin R, Genome Project Data Processing, S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079
|
17 |
Li Y,Xia L, Tan K, Ye X,Zuo Z,Li M, Xiao R, Wang Z,Liu X,Deng M
|
18 |
Liu X,Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H
|
19 |
Liu J, Dou X, Chen C, Chen C,Liu C, Xu MM, Zhao S, Shen B, Gao Y,Han D
|
20 |
Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW
|
21 |
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, Hong Y, Percharde M, Guo L, Wu Z
|
22 |
Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63
|
23 |
Maksakova IA, Thompson PJ, Goyal P,Jones SJ, Singh PB, Karimi MM, Lorincz MC (2013) Distinct roles of KAP1, HP1 and G9a/ GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenet Chromatin 6:15
|
24 |
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M,Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931
|
25 |
Mendel M, Chen KM, Homolka D, Gos P,Pandey RR, McCarthy AA, Pillai RS (2018) Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol Cell 71:986
|
26 |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646
|
27 |
Nayler O, Hartmann AM, Stamm S (2000) The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J Cell Biol 150:949–962
|
28 |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C,Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
|
29 |
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S,Huang B,Shen X, Ramalho-Santos M(2018) A LINE1-nucleolin Partnership Regulates Early Development and ESC identity. Cell 174(391–405):
|
30 |
Quinlan AR (2014) BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinform 47:11–12
|
31 |
Rodriguez-Terrones D, Gaume X, Ishiuchi T,Weiss A, Kopp A, Kruse K, Penning A, Vaquerizas JM, Brino L,Torres-Padilla ME (2018) A molecular roadmap for the emergence of early-embryonic- like cells in culture. Nat Genet 50:106–119
|
32 |
Roundtree IA, Evans ME, Pan T, He C (2017a) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200
|
33 |
Roundtree IA,Zhang Z Luo GZ, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P
|
34 |
Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S,Marquis J
|
35 |
Schafer S, Miao K, Benson CC, Heinig M, Cook SA, Hubner N (2015) Alternative splicing signatures in RNA-seq data: percent spliced in (PSI). Curr Protoc Hum Genet 87:11–16
|
36 |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine- modified RNA. Cell Res 27:315–328
|
37 |
Su Y, Sugiura K, Sun F
|
38 |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES
|
39 |
Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192
|
40 |
Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111
|
41 |
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515
|
42 |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G
|
43 |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399
|
44 |
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hobartner C, Sloan KE, Bohnsack MT (2017) Human METTL16 is a N-6-methyladenosine (m(6)A) methyltransferase that targets premRNAs and various non-coding RNAs. Embo Rep 18:2004–2014
|
45 |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY
|
46 |
Xu WQ, Li JH, He CX, Wen J, Ma HH, Rong BW, Diao JB, Wang LY, Wang JH, Wu FZ
|
47 |
Zaccara S, Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181 (1582–1595):
|
48 |
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W
|
49 |
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK, He C (2017) m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542:475–478
|
50 |
Zhou J,Wan J, Gao X,Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594
|
/
〈 | 〉 |