Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos

Chuan Chen, Wenqiang Liu, Jiayin Guo, Yuanyuan Liu, Xuelian Liu, Jun Liu, Xiaoyang Dou, Rongrong Le, Yixin Huang, Chong Li, Lingyue Yang, Xiaochen Kou, Yanhong Zhao, You Wu, Jiayu Chen, Hong Wang, Bin Shen, Yawei Gao, Shaorong Gao

PDF(2386 KB)
PDF(2386 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (6) : 455-474. DOI: 10.1007/s13238-021-00837-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos

Author information +
History +

Abstract

N6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.

Keywords

YTHDC1 / LINE1-scaffold complex / 2-cell / retrotransposons / H3K9me3

Cite this article

Download citation ▾
Chuan Chen, Wenqiang Liu, Jiayin Guo, Yuanyuan Liu, Xuelian Liu, Jun Liu, Xiaoyang Dou, Rongrong Le, Yixin Huang, Chong Li, Lingyue Yang, Xiaochen Kou, Yanhong Zhao, You Wu, Jiayu Chen, Hong Wang, Bin Shen, Yawei Gao, Shaorong Gao. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell, 2021, 12(6): 455‒474 https://doi.org/10.1007/s13238-021-00837-8

References

[1]
Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719
CrossRef Google scholar
[2]
Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC (2015) An ultra-low-input native ChIP-seq protocol for genomewide profiling of rare cell populations. Nat Commun 6:6033
CrossRef Google scholar
[3]
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S,Bourc’his D (2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature 591(7849):312–316
CrossRef Google scholar
[4]
Chen T, Hao YJ, Zhang Y,Li MM, Wang M, Han W, Wu Y, Lv Y,Hao J, Wang L (2015) m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16:289–301
CrossRef Google scholar
[5]
De Iaco A, Planet E, Coluccio A, Verp S, Duc J,Trono D (2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet 49:941–945
CrossRef Google scholar
[6]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S,Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J,Amariglio N, Kupiec M (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206
CrossRef Google scholar
[7]
Geula S, Moshitch-Moshkovitz S, Dominissini D (2015) m(6)A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–1006
CrossRef Google scholar
[8]
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589
CrossRef Google scholar
[9]
Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O’Carroll D (2017) The RNA m (6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell 67(1059–1067):
CrossRef Google scholar
[10]
Iyengar S, Ivanov AV, Jin VX (2011) Functional analysis of KAP1 genomic recruitment. Mol Cell Biol 31:1833–1847
CrossRef Google scholar
[11]
Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres- Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49:1502–1510
CrossRef Google scholar
[12]
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:
CrossRef Google scholar
[13]
Kent WJ, Zweig AS, Barber G,Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207
CrossRef Google scholar
[14]
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
CrossRef Google scholar
[15]
Li X, Fu XD (2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20:503–519
CrossRef Google scholar
[16]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,Durbin R, Genome Project Data Processing, S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079
CrossRef Google scholar
[17]
Li Y,Xia L, Tan K, Ye X,Zuo Z,Li M, Xiao R, Wang Z,Liu X,Deng M (2020) N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52:870–877
CrossRef Google scholar
[18]
Liu X,Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H (2016) Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537:558–562
CrossRef Google scholar
[19]
Liu J, Dou X, Chen C, Chen C,Liu C, Xu MM, Zhao S, Shen B, Gao Y,Han D (2020) N (6)-methyladenosine of chromosomeassociated regulatory RNA regulates chromatin state and transcription. Science 367:580–586
CrossRef Google scholar
[20]
Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW (2021) The RNA m(6)A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature
CrossRef Google scholar
[21]
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, Hong Y, Percharde M, Guo L, Wu Z (2020) Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep 30(3296–3311):
CrossRef Google scholar
[22]
Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63
CrossRef Google scholar
[23]
Maksakova IA, Thompson PJ, Goyal P,Jones SJ, Singh PB, Karimi MM, Lorincz MC (2013) Distinct roles of KAP1, HP1 and G9a/ GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenet Chromatin 6:15
CrossRef Google scholar
[24]
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M,Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931
CrossRef Google scholar
[25]
Mendel M, Chen KM, Homolka D, Gos P,Pandey RR, McCarthy AA, Pillai RS (2018) Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol Cell 71:986
CrossRef Google scholar
[26]
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646
CrossRef Google scholar
[27]
Nayler O, Hartmann AM, Stamm S (2000) The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J Cell Biol 150:949–962
CrossRef Google scholar
[28]
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C,Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
CrossRef Google scholar
[29]
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S,Huang B,Shen X, Ramalho-Santos M(2018) A LINE1-nucleolin Partnership Regulates Early Development and ESC identity. Cell 174(391–405):
CrossRef Google scholar
[30]
Quinlan AR (2014) BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinform 47:11–12
CrossRef Google scholar
[31]
Rodriguez-Terrones D, Gaume X, Ishiuchi T,Weiss A, Kopp A, Kruse K, Penning A, Vaquerizas JM, Brino L,Torres-Padilla ME (2018) A molecular roadmap for the emergence of early-embryonic- like cells in culture. Nat Genet 50:106–119
CrossRef Google scholar
[32]
Roundtree IA, Evans ME, Pan T, He C (2017a) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200
CrossRef Google scholar
[33]
Roundtree IA,Zhang Z Luo GZ, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P (2017b) YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6:
CrossRef Google scholar
[34]
Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S,Marquis J (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240
CrossRef Google scholar
[35]
Schafer S, Miao K, Benson CC, Heinig M, Cook SA, Hubner N (2015) Alternative splicing signatures in RNA-seq data: percent spliced in (PSI). Curr Protoc Hum Genet 87:11–16
CrossRef Google scholar
[36]
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine- modified RNA. Cell Res 27:315–328
CrossRef Google scholar
[37]
Su Y, Sugiura K, Sun F (2012) MARF1 regulates essential oogenic processes in mice. Science 335:1496–1499
CrossRef Google scholar
[38]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550
CrossRef Google scholar
[39]
Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192
CrossRef Google scholar
[40]
Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111
CrossRef Google scholar
[41]
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515
CrossRef Google scholar
[42]
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120
CrossRef Google scholar
[43]
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399
CrossRef Google scholar
[44]
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hobartner C, Sloan KE, Bohnsack MT (2017) Human METTL16 is a N-6-methyladenosine (m(6)A) methyltransferase that targets premRNAs and various non-coding RNAs. Embo Rep 18:2004–2014
CrossRef Google scholar
[45]
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61:507–519
CrossRef Google scholar
[46]
Xu WQ, Li JH, He CX, Wen J, Ma HH, Rong BW, Diao JB, Wang LY, Wang JH, Wu FZ (2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature. 591(7849):317–321
CrossRef Google scholar
[47]
Zaccara S, Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181 (1582–1595):
CrossRef Google scholar
[48]
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137
CrossRef Google scholar
[49]
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK, He C (2017) m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542:475–478
CrossRef Google scholar
[50]
Zhou J,Wan J, Gao X,Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(2386 KB)

Accesses

Citations

Detail

Sections
Recommended

/