REVIEW

3D chromatin architecture and epigenetic regulation in cancer stem cells

  • Yuliang Feng 1 ,
  • Xingguo Liu 2,3 ,
  • Siim Pauklin , 1
Expand
  • 1. Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford OX3 7LD, UK
  • 2. Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
  • 3. Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China

Received date: 07 Aug 2020

Accepted date: 05 Dec 2020

Published date: 15 Jun 2021

Copyright

2021 The Author(s)

Abstract

Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.

Cite this article

Yuliang Feng , Xingguo Liu , Siim Pauklin . 3D chromatin architecture and epigenetic regulation in cancer stem cells[J]. Protein & Cell, 2021 , 12(6) : 440 -454 . DOI: 10.1007/s13238-020-00819-2

1
Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D (2015) Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521:366–370

DOI

2
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5:e10531

DOI

3
Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

DOI

4
Bartman CR, Hsu SC, Hsiung CC, Raj A, Blobel GA (2016) Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol Cell 62:237–247

DOI

5
Bartova E, Krejci J, Harnicarova A, Kozubek S (2008a) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76:24–32

DOI

6
Bartova E, Galiova G, Krejci J, Harnicarova A, Strasak L, Kozubek S (2008b) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702

DOI

7
Beagan JA, Gilgenast TG, Kim J, Plona Z, Norton HK, Hu G, Hsu SC, Shields EJ, Lyu X, Apostolou E (2016) Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18:611–624

DOI

8
Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524

DOI

9
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA (2019) Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell 76:473–484

DOI

10
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA (2011) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44:40–46

DOI

11
Bertolini JA, Favaro R, Zhu Y, Pagin M, Ngan CY, Wong CH, Tjong H, Vermunt MW, Martynoga B, Barone C (2019) Mapping the global chromatin connectivity network for Sox2 function in neural stem cell maintenance. Cell Stem Cell 24:462–476

DOI

12
Bhan S, Negi SS, Shao C, Glazer CA, Chuang A, Gaykalova DA, Sun W, Sidransky D, Ha PK, Califano JA (2011) BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer. Clin Cancer Res 17:4267–4276

DOI

13
Cai Z, Cao C, Ji L, Ye R, Wang D, Xia C, Wang S, Du Z, Hu N, Yu X (2020) RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582:432–437

DOI

14
Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A, Chern E (2017) Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/betacatenin pathway. Oncotarget 8:2604–2616

DOI

15
Cheema Z, Hari-Gupta Y, Kita GX, Farrar D, Seddon I, Corr J, Klenova E (2014) Expression of the cancer-testis antigen BORIS correlates with prostate cancer. Prostate 74:164–176

DOI

16
Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D (2012) SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS ONE 7:e36326

DOI

17
Cheng J, Li W, Kang B, Zhou Y, Song J, Dan S, Yang Y, Zhang X, Li J, Yin S (2015) Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat Commun 6:7209

DOI

18
Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelialmesenchymal transdifferentiation. Cancer Res 70:10433–10444

DOI

19
D’Arcy V, Pore N, Docquier F, Abdullaev ZK, Chernukhin I, Kita GX, Rai S, Smart M, Farrar D, Pack S (2008) BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours. Br J Cancer 98:571–579

DOI

20
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM (2019) DNA loop extrusion by human cohesin. Science 366:1338–1345

DOI

21
de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, Krijger PH, Festuccia N, Nora EP, Welling M (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:227–231

DOI

22
Debruyne DN, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, Huang H, Moreau L, McLane M, Day DS (2019) BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature 572:676–680

DOI

23
Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602–616

DOI

24
Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, Abuhashem A, Cavaliere P, Aronson B, Shah V (2019) KLF4 is involved in the organization and regulation of pluripotencyassociated three-dimensional enhancer networks. Nat Cell Biol 21:1179–1190

DOI

25
D’Ippolito AM, McDowell IC, Barrera A, Hong LK, Leichter SM, Bartelt LC, Vockley CM, Majoros WH, Safi A, Song L (2018) Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst 7:146–160

DOI

26
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

DOI

27
Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336

DOI

28
Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

DOI

29
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–387

DOI

30
Dunican DS, Mjoseng HK, Duthie L, Flyamer IM, Bickmore WA, Meehan RR (2020) Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol 18:25

DOI

31
Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447

DOI

32
Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38:452–464

DOI

33
Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, Ren B (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26:1345–1348

DOI

34
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB (2020) Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell 54:302–316

DOI

35
Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

DOI

36
Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039

DOI

37
Fischedick G, Wu G, Adachi K, Arauzo-Bravo MJ, Greber B, Radstaak M, Kohler G, Tapia N, Iacone R, Anastassiadis K (2014) Nanog induces hyperplasia without initiating tumors. Stem Cell Res 13:300–315

DOI

38
Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science. https://doi.org/10.1126/science.aal2380

DOI

39
Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:244–253

DOI

40
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

DOI

41
Griessinger E, Moschoi R, Biondani G, Peyron JF (2017) Mitochondrial transfer in the leukemia microenvironment. Trends Cancer 3:828–839

DOI

42
Grubert F, Srivas R, Spacek DV, Kasowski M, Ruiz-Velasco M, Sinnott-Armstrong N, Greenside P, Narasimha A, Liu Q, Geller B (2020) Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583:737–743

DOI

43
Guarda A, Bolognese F, Bonapace IM, Badaracco G (2009) Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp Cell Res 315:1895–1903

DOI

44
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

DOI

45
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

DOI

46
Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldana-Meyer R, Reinberg D, Darzacq X, Tjian R (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell 76:395–411

DOI

47
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol 208:33–52

DOI

48
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

DOI

49
Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner JE, Young RA (2015) Convergence of developmental and oncogenic signaling pathways at transcriptional superenhancers. Mol Cell 58:362–370

DOI

50
Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–1458

DOI

51
Hnisz D, Schuijers J, Li CH, Young RA (2018) Regulation and dysregulation of chromosome structure in cancer. Annu Rev Cancer Biol 2:21–40

DOI

52
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

DOI

53
Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540

DOI

54
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G (2019) Why be one protein when you can affect many? The multiple roles of YB- 1 in lung cancer and mesothelioma. Front Cell Dev Biol 7:221

DOI

55
Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V (2020) Large-scale topological changes restrain malignant progression in colorectal cancer. Cell 182:1474–1489

DOI

56
Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L (2015) Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:748–757

DOI

57
Kaufhold S, Garban H, Bonavida B (2016) Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res 35:84

DOI

58
Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (2019) Human cohesin compacts DNA by loop extrusion. Science 366:1345–1349

DOI

59
Knappe N, Novak D, Weina K, Bernhardt M, Reith M, Larribere L, Holzel M, Tuting T,Gebhardt C, Umansky V (2016) Directed dedifferentiation using partial reprogramming induces invasive phenotype in melanoma cells. Stem Cells 34:832–846

DOI

60
Krijger PH, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T (2016) Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18:597–610

DOI

61
Laugesen A, Helin K (2014) Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14:735–751

DOI

62
Lemaitre C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 144:111–122

DOI

63
Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell selfrenewal. Cell Stem Cell 1:403–415

DOI

64
Li A, Zhou T, Guo L, Si J (2010) Collagen type I regulates betacatenin tyrosine phosphorylation and nuclear translocation to promote migration and proliferation of gastric carcinoma cells. Oncol Rep 23:1247–1255

DOI

65
Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35:940–950

DOI

66
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

DOI

67
Link PA, Zhang W, Odunsi K, Karpf AR (2013) BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun 13:6

68
Lorzadeh A, Bilenky M, Hammond C, Knapp D, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M (2016) Nucleosome density ChIP-seq identifies distinct chromatin modification signatures associated with MNase accessibility. Cell Rep 17:2112–2124

DOI

69
Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 99:6806–6811

DOI

70
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334

DOI

71
Lu X, Mazur SJ, Lin T, Appella E, Xu Y (2014) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33:2655–2664

DOI

72
Maass PG, Barutcu AR, Rinn JL (2019) Interchromosomal interactions: a genomic love story of kissing chromosomes. J Cell Biol 218:27–38

DOI

73
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M (2008) The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

DOI

74
Manukyan M, Singh PB (2014) Epigenome rejuvenation: HP1beta mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep 4:4789

DOI

75
Marucci L, Pedone E, Di Vicino U, Sanuy-Escribano B, Isalan M, Cosma MP (2014) beta-Catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep 8:1686–1696

DOI

76
McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genomescale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874

DOI

77
Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344

DOI

78
Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

DOI

79
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45

DOI

80
Monahan K, Horta A, Lomvardas S (2019) LHX2- and LDB1- mediated trans interactions regulate olfactory receptor choice. Nature 565:448–453

DOI

81
Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922

DOI

82
Nacht AS, Ferrari R, Zaurin R, Scabia V, Carbonell-Caballero J, Le Dily F, Quilez J, Leopoldi A, Brisken C, Beato M (2019) C/EBPalpha mediates the growth inhibitory effect of progestins on breast cancer cells. EMBO J 38:e101426

DOI

83
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385

DOI

84
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944

DOI

85
Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ (2018) Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep 22:2615–2627

DOI

86
Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

DOI

87
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–677

DOI

88
Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237

DOI

89
Pagliara S, Franze K, McClain CR, Wylde G, Fisher CL, Franklin RJM, Kabla AJ, Keyser UF, Chalut KJ (2014) Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat Mater 13:638–644

DOI

90
Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104:15619–15624

DOI

91
Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343

DOI

92
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M (2010) Molecular maps of the reorganization of genomenuclear lamina interactions during differentiation. Mol Cell 38:603–613

DOI

93
Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB, Zorov DB (2015) Intercellular transfer of mitochondria. Biochemistry 80:542–548

DOI

94
Pujadas E, Feinberg AP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148:1123–1131

DOI

95
Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT (2019) Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock. Proc Natl Acad Sci USA 116:19431–19439

DOI

96
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V,Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49:1522–1528

DOI

97
Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jacome-Lopez K, Nora EP, Bruneau BG, Tsirigos A, Furlan- MMagaril J, Skok (2019) RNA interactions are essential for CTCF-mediated genome organization. Mol Cell 76:412–422

DOI

98
Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

DOI

99
Schlesinger S, Kaffe B, Melcer S, Aguilera JD, Sivaraman DM, Kaplan T, Meshorer E (2017) A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res 45:12181–12194

DOI

100
Shahzad U, Li C, Johnston M, Wang JJ, Sabha N, Varn FS, Riemenschneider A, Krumholtz S, Meda P, Smith CA (2020) CASCADES, a novel SOX2 super-enhancer associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma multiforme. bioRxiv. https://doi.org/10.1101/2020.09.05.284349

DOI

101
Shakya A, Callister C, Goren A, Yosef N, Garg N, Khoddami V, Nix D, Regev A, Tantin D (2015) Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 35:1014–1025

DOI

102
Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q (2012) Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56:1004–1014

DOI

103
Shibata H, Komura S, Yamada Y, Sankoda N, Tanaka A, Ukai T, Kabata M, Sakurai S, Kuze B, Woltjen K (2018) In vivo reprogramming drives Kras-induced cancer development. Nat Commun 9:2081

DOI

104
Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, Jangi M, Giallourakis CC, Sharp PA, Young RA (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350:978–981

DOI

105
Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959

DOI

106
Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

DOI

107
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64

DOI

108
Szabo Q, Donjon A, Jerkovic I, Papadopoulos GL, Cheutin T, Bonev B, Nora EP, Bruneau BG, Bantignies F, Cavalli G (2020) Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat Genet 52:1151–1157

DOI

109
Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346:1238–1242

DOI

110
Timp W, Bravo HC, McDonald OG, Goggins M, Umbricht C, Zeiger M, Feinberg AP, Irizarry RA (2014) Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 6:61

DOI

111
Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947

DOI

112
Underwood JM, Becker KA, Stein GS, Nickerson JA (2017) The ultrastructural signature of human embryonic stem cells. J Cell Biochem 118:764–774

DOI

113
van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791

DOI

114
Vian L, Pekowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N (2018) The energetics and physiological impact of cohesin extrusion. Cell 173:1165–1178

DOI

115
Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411

DOI

116
Wang MC, Jiao M, Wu T, Jing L, Cui J, Guo H, Tian T, Ruan ZP, Wei YC, Jiang LL (2016) Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study. Oncotarget 7:9586–9599

DOI

117
Wang H, Xu X, Nguyen CM, Liu Y, Gao Y, Lin X, Daley T, Kipniss NH, La Russa M, Qi LS (2018) CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175:1405–1417

DOI

118
Wang B, Kong L, Babu D, Choudhary R, Fam W, Tng JQ, Goh Y, Liu X, Song FF, Chia P (2020) Three-dimensional genome organization maps in normal haematopoietic stem cells and acute myeloid leukemia. bioRxiv. https://doi.org/10.1101/2020.04.18.047738

DOI

119
Wei X, Xiang Y, Abnousi A, Sun T, Lin X, Li W, Hu M, Diao Y (2020) HiCAR: a robust and sensitive multi-omic co-assay for simultaneous measurement of transcriptome, chromatin accessibility, and cis-regulatory chromatin contacts. bioRxiv. https://doi.org/10.1101/2020.11.02.366062

DOI

120
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL (2017) YY1 Is a structural regulator of enhancer-promoter loops. Cell 171:1573–1588

DOI

121
Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–250

DOI

122
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319

DOI

123
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J (2018) KLF4, a gene regulating prostate stem cell homeostasis, is a barrier to malignant progression and predictor of good prognosis in prostate cancer. Cell Rep 25:3006–3020

DOI

124
Yochum GS, Sherrick CM, Macpartlin M, Goodman RH (2010) A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5’ and 3’ Wnt responsive enhancers. Proc Natl Acad Sci USA 107:145–150

DOI

125
You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

DOI

126
Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607

DOI

127
Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642

DOI

Outlines

/