3D chromatin architecture and epigenetic regulation in cancer stem cells
Yuliang Feng, Xingguo Liu, Siim Pauklin
3D chromatin architecture and epigenetic regulation in cancer stem cells
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.
chromatin architecture / 3D chromatin topology / epigenetics / tumorigenesis / cancer stem cells / pluripotent stem cells
[1] |
Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D
CrossRef
Google scholar
|
[2] |
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5:e10531
CrossRef
Google scholar
|
[3] |
Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M
CrossRef
Google scholar
|
[4] |
Bartman CR, Hsu SC, Hsiung CC, Raj A, Blobel GA (2016) Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol Cell 62:237–247
CrossRef
Google scholar
|
[5] |
Bartova E, Krejci J, Harnicarova A, Kozubek S (2008a) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76:24–32
CrossRef
Google scholar
|
[6] |
Bartova E, Galiova G, Krejci J, Harnicarova A, Strasak L, Kozubek S (2008b) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702
CrossRef
Google scholar
|
[7] |
Beagan JA, Gilgenast TG, Kim J, Plona Z, Norton HK, Hu G, Hsu SC, Shields EJ, Lyu X, Apostolou E
CrossRef
Google scholar
|
[8] |
Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR
CrossRef
Google scholar
|
[9] |
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA (2019) Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell 76:473–484
CrossRef
Google scholar
|
[10] |
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA
CrossRef
Google scholar
|
[11] |
Bertolini JA, Favaro R, Zhu Y, Pagin M, Ngan CY, Wong CH, Tjong H, Vermunt MW, Martynoga B, Barone C
CrossRef
Google scholar
|
[12] |
Bhan S, Negi SS, Shao C, Glazer CA, Chuang A, Gaykalova DA, Sun W, Sidransky D, Ha PK, Califano JA (2011) BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer. Clin Cancer Res 17:4267–4276
CrossRef
Google scholar
|
[13] |
Cai Z, Cao C, Ji L, Ye R, Wang D, Xia C, Wang S, Du Z, Hu N, Yu X (2020) RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582:432–437
CrossRef
Google scholar
|
[14] |
Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A, Chern E (2017) Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/betacatenin pathway. Oncotarget 8:2604–2616
CrossRef
Google scholar
|
[15] |
Cheema Z, Hari-Gupta Y, Kita GX, Farrar D, Seddon I, Corr J, Klenova E (2014) Expression of the cancer-testis antigen BORIS correlates with prostate cancer. Prostate 74:164–176
CrossRef
Google scholar
|
[16] |
Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D
CrossRef
Google scholar
|
[17] |
Cheng J, Li W, Kang B, Zhou Y, Song J, Dan S, Yang Y, Zhang X, Li J, Yin S
CrossRef
Google scholar
|
[18] |
Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS
CrossRef
Google scholar
|
[19] |
D’Arcy V, Pore N, Docquier F, Abdullaev ZK, Chernukhin I, Kita GX, Rai S, Smart M, Farrar D, Pack S
CrossRef
Google scholar
|
[20] |
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM (2019) DNA loop extrusion by human cohesin. Science 366:1338–1345
CrossRef
Google scholar
|
[21] |
de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, Krijger PH, Festuccia N, Nora EP, Welling M
CrossRef
Google scholar
|
[22] |
Debruyne DN, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, Huang H, Moreau L, McLane M, Day DS
CrossRef
Google scholar
|
[23] |
Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602–616
CrossRef
Google scholar
|
[24] |
Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, Abuhashem A, Cavaliere P, Aronson B, Shah V
CrossRef
Google scholar
|
[25] |
D’Ippolito AM, McDowell IC, Barrera A, Hong LK, Leichter SM, Bartelt LC, Vockley CM, Majoros WH, Safi A, Song L
CrossRef
Google scholar
|
[26] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380
CrossRef
Google scholar
|
[27] |
Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W
CrossRef
Google scholar
|
[28] |
Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S
CrossRef
Google scholar
|
[29] |
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K
CrossRef
Google scholar
|
[30] |
Dunican DS, Mjoseng HK, Duthie L, Flyamer IM, Bickmore WA, Meehan RR (2020) Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol 18:25
CrossRef
Google scholar
|
[31] |
Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH
CrossRef
Google scholar
|
[32] |
Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A
CrossRef
Google scholar
|
[33] |
Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, Ren B (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26:1345–1348
CrossRef
Google scholar
|
[34] |
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB
CrossRef
Google scholar
|
[35] |
Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33
CrossRef
Google scholar
|
[36] |
Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039
CrossRef
Google scholar
|
[37] |
Fischedick G, Wu G, Adachi K, Arauzo-Bravo MJ, Greber B, Radstaak M, Kohler G, Tapia N, Iacone R, Anastassiadis K
CrossRef
Google scholar
|
[38] |
Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science. https://doi.org/10.1126/
CrossRef
Google scholar
|
[39] |
Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:244–253
CrossRef
Google scholar
|
[40] |
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084
CrossRef
Google scholar
|
[41] |
Griessinger E, Moschoi R, Biondani G, Peyron JF (2017) Mitochondrial transfer in the leukemia microenvironment. Trends Cancer 3:828–839
CrossRef
Google scholar
|
[42] |
Grubert F, Srivas R, Spacek DV, Kasowski M, Ruiz-Velasco M, Sinnott-Armstrong N, Greenside P, Narasimha A, Liu Q, Geller B
CrossRef
Google scholar
|
[43] |
Guarda A, Bolognese F, Bonapace IM, Badaracco G (2009) Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp Cell Res 315:1895–1903
CrossRef
Google scholar
|
[44] |
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644
CrossRef
Google scholar
|
[45] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
CrossRef
Google scholar
|
[46] |
Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldana-Meyer R, Reinberg D, Darzacq X, Tjian R (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell 76:395–411
CrossRef
Google scholar
|
[47] |
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol 208:33–52
CrossRef
Google scholar
|
[48] |
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947
CrossRef
Google scholar
|
[49] |
Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner JE, Young RA (2015) Convergence of developmental and oncogenic signaling pathways at transcriptional superenhancers. Mol Cell 58:362–370
CrossRef
Google scholar
|
[50] |
Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA
CrossRef
Google scholar
|
[51] |
Hnisz D, Schuijers J, Li CH, Young RA (2018) Regulation and dysregulation of chromosome structure in cancer. Annu Rev Cancer Biol 2:21–40
CrossRef
Google scholar
|
[52] |
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477
CrossRef
Google scholar
|
[53] |
Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540
CrossRef
Google scholar
|
[54] |
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G (2019) Why be one protein when you can affect many? The multiple roles of YB- 1 in lung cancer and mesothelioma. Front Cell Dev Biol 7:221
CrossRef
Google scholar
|
[55] |
Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V
CrossRef
Google scholar
|
[56] |
Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L
CrossRef
Google scholar
|
[57] |
Kaufhold S, Garban H, Bonavida B (2016) Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res 35:84
CrossRef
Google scholar
|
[58] |
Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (2019) Human cohesin compacts DNA by loop extrusion. Science 366:1345–1349
CrossRef
Google scholar
|
[59] |
Knappe N, Novak D, Weina K, Bernhardt M, Reith M, Larribere L, Holzel M, Tuting T,Gebhardt C, Umansky V
CrossRef
Google scholar
|
[60] |
Krijger PH, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T (2016) Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18:597–610
CrossRef
Google scholar
|
[61] |
Laugesen A, Helin K (2014) Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14:735–751
CrossRef
Google scholar
|
[62] |
Lemaitre C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 144:111–122
CrossRef
Google scholar
|
[63] |
Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell selfrenewal. Cell Stem Cell 1:403–415
CrossRef
Google scholar
|
[64] |
Li A, Zhou T, Guo L, Si J (2010) Collagen type I regulates betacatenin tyrosine phosphorylation and nuclear translocation to promote migration and proliferation of gastric carcinoma cells. Oncol Rep 23:1247–1255
CrossRef
Google scholar
|
[65] |
Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35:940–950
CrossRef
Google scholar
|
[66] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO
CrossRef
Google scholar
|
[67] |
Link PA, Zhang W, Odunsi K, Karpf AR (2013) BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun 13:6
|
[68] |
Lorzadeh A, Bilenky M, Hammond C, Knapp D, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M
CrossRef
Google scholar
|
[69] |
Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA
CrossRef
Google scholar
|
[70] |
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334
CrossRef
Google scholar
|
[71] |
Lu X, Mazur SJ, Lin T, Appella E, Xu Y (2014) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33:2655–2664
CrossRef
Google scholar
|
[72] |
Maass PG, Barutcu AR, Rinn JL (2019) Interchromosomal interactions: a genomic love story of kissing chromosomes. J Cell Biol 218:27–38
CrossRef
Google scholar
|
[73] |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M
CrossRef
Google scholar
|
[74] |
Manukyan M, Singh PB (2014) Epigenome rejuvenation: HP1beta mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep 4:4789
CrossRef
Google scholar
|
[75] |
Marucci L, Pedone E, Di Vicino U, Sanuy-Escribano B, Isalan M, Cosma MP (2014) beta-Catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep 8:1686–1696
CrossRef
Google scholar
|
[76] |
McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genomescale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874
CrossRef
Google scholar
|
[77] |
Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344
CrossRef
Google scholar
|
[78] |
Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116
CrossRef
Google scholar
|
[79] |
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45
CrossRef
Google scholar
|
[80] |
Monahan K, Horta A, Lomvardas S (2019) LHX2- and LDB1- mediated trans interactions regulate olfactory receptor choice. Nature 565:448–453
CrossRef
Google scholar
|
[81] |
Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922
CrossRef
Google scholar
|
[82] |
Nacht AS, Ferrari R, Zaurin R, Scabia V, Carbonell-Caballero J, Le Dily F, Quilez J, Leopoldi A, Brisken C, Beato M
CrossRef
Google scholar
|
[83] |
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J
CrossRef
Google scholar
|
[84] |
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944
CrossRef
Google scholar
|
[85] |
Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ (2018) Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep 22:2615–2627
CrossRef
Google scholar
|
[86] |
Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W
CrossRef
Google scholar
|
[87] |
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T
CrossRef
Google scholar
|
[88] |
Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237
CrossRef
Google scholar
|
[89] |
Pagliara S, Franze K, McClain CR, Wylde G, Fisher CL, Franklin RJM, Kabla AJ, Keyser UF, Chalut KJ (2014) Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat Mater 13:638–644
CrossRef
Google scholar
|
[90] |
Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104:15619–15624
CrossRef
Google scholar
|
[91] |
Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343
CrossRef
Google scholar
|
[92] |
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M
CrossRef
Google scholar
|
[93] |
Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB, Zorov DB (2015) Intercellular transfer of mitochondria. Biochemistry 80:542–548
CrossRef
Google scholar
|
[94] |
Pujadas E, Feinberg AP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148:1123–1131
CrossRef
Google scholar
|
[95] |
Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT (2019) Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock. Proc Natl Acad Sci USA 116:19431–19439
CrossRef
Google scholar
|
[96] |
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V,Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M
CrossRef
Google scholar
|
[97] |
Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jacome-Lopez K, Nora EP, Bruneau BG, Tsirigos A, Furlan- MMagaril J, Skok
CrossRef
Google scholar
|
[98] |
Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE
CrossRef
Google scholar
|
[99] |
Schlesinger S, Kaffe B, Melcer S, Aguilera JD, Sivaraman DM, Kaplan T, Meshorer E (2017) A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res 45:12181–12194
CrossRef
Google scholar
|
[100] |
Shahzad U, Li C, Johnston M, Wang JJ, Sabha N, Varn FS, Riemenschneider A, Krumholtz S, Meda P, Smith CA
CrossRef
Google scholar
|
[101] |
Shakya A, Callister C, Goren A, Yosef N, Garg N, Khoddami V, Nix D, Regev A, Tantin D (2015) Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 35:1014–1025
CrossRef
Google scholar
|
[102] |
Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q
CrossRef
Google scholar
|
[103] |
Shibata H, Komura S, Yamada Y, Sankoda N, Tanaka A, Ukai T, Kabata M, Sakurai S, Kuze B, Woltjen K
CrossRef
Google scholar
|
[104] |
Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, Jangi M, Giallourakis CC, Sharp PA, Young RA (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350:978–981
CrossRef
Google scholar
|
[105] |
Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB
CrossRef
Google scholar
|
[106] |
Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626
CrossRef
Google scholar
|
[107] |
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A
CrossRef
Google scholar
|
[108] |
Szabo Q, Donjon A, Jerkovic I, Papadopoulos GL, Cheutin T, Bonev B, Nora EP, Bruneau BG, Bantignies F, Cavalli G (2020) Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat Genet 52:1151–1157
CrossRef
Google scholar
|
[109] |
Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346:1238–1242
CrossRef
Google scholar
|
[110] |
Timp W, Bravo HC, McDonald OG, Goggins M, Umbricht C, Zeiger M, Feinberg AP, Irizarry RA (2014) Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 6:61
CrossRef
Google scholar
|
[111] |
Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947
CrossRef
Google scholar
|
[112] |
Underwood JM, Becker KA, Stein GS, Nickerson JA (2017) The ultrastructural signature of human embryonic stem cells. J Cell Biochem 118:764–774
CrossRef
Google scholar
|
[113] |
van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791
CrossRef
Google scholar
|
[114] |
Vian L, Pekowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N
CrossRef
Google scholar
|
[115] |
Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411
CrossRef
Google scholar
|
[116] |
Wang MC, Jiao M, Wu T, Jing L, Cui J, Guo H, Tian T, Ruan ZP, Wei YC, Jiang LL
CrossRef
Google scholar
|
[117] |
Wang H, Xu X, Nguyen CM, Liu Y, Gao Y, Lin X, Daley T, Kipniss NH, La Russa M, Qi LS (2018) CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175:1405–1417
CrossRef
Google scholar
|
[118] |
Wang B, Kong L, Babu D, Choudhary R, Fam W, Tng JQ, Goh Y, Liu X, Song FF, Chia P
CrossRef
Google scholar
|
[119] |
Wei X, Xiang Y, Abnousi A, Sun T, Lin X, Li W, Hu M, Diao Y (2020) HiCAR: a robust and sensitive multi-omic co-assay for simultaneous measurement of transcriptome, chromatin accessibility, and cis-regulatory chromatin contacts. bioRxiv. https://doi.org/10.
CrossRef
Google scholar
|
[120] |
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL
CrossRef
Google scholar
|
[121] |
Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–250
CrossRef
Google scholar
|
[122] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319
CrossRef
Google scholar
|
[123] |
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J
CrossRef
Google scholar
|
[124] |
Yochum GS, Sherrick CM, Macpartlin M, Goodman RH (2010) A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5’ and 3’ Wnt responsive enhancers. Proc Natl Acad Sci USA 107:145–150
CrossRef
Google scholar
|
[125] |
You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20
CrossRef
Google scholar
|
[126] |
Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607
CrossRef
Google scholar
|
[127] |
Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL
CrossRef
Google scholar
|
/
〈 | 〉 |