3D chromatin architecture and epigenetic regulation in cancer stem cells

Yuliang Feng, Xingguo Liu, Siim Pauklin

PDF(1313 KB)
PDF(1313 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (6) : 440-454. DOI: 10.1007/s13238-020-00819-2
REVIEW
REVIEW

3D chromatin architecture and epigenetic regulation in cancer stem cells

Author information +
History +

Abstract

Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.

Keywords

chromatin architecture / 3D chromatin topology / epigenetics / tumorigenesis / cancer stem cells / pluripotent stem cells

Cite this article

Download citation ▾
Yuliang Feng, Xingguo Liu, Siim Pauklin. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell, 2021, 12(6): 440‒454 https://doi.org/10.1007/s13238-020-00819-2

References

[1]
Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D (2015) Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521:366–370
CrossRef Google scholar
[2]
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5:e10531
CrossRef Google scholar
[3]
Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538
CrossRef Google scholar
[4]
Bartman CR, Hsu SC, Hsiung CC, Raj A, Blobel GA (2016) Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol Cell 62:237–247
CrossRef Google scholar
[5]
Bartova E, Krejci J, Harnicarova A, Kozubek S (2008a) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76:24–32
CrossRef Google scholar
[6]
Bartova E, Galiova G, Krejci J, Harnicarova A, Strasak L, Kozubek S (2008b) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702
CrossRef Google scholar
[7]
Beagan JA, Gilgenast TG, Kim J, Plona Z, Norton HK, Hu G, Hsu SC, Shields EJ, Lyu X, Apostolou E (2016) Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18:611–624
CrossRef Google scholar
[8]
Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524
CrossRef Google scholar
[9]
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA (2019) Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell 76:473–484
CrossRef Google scholar
[10]
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA (2011) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44:40–46
CrossRef Google scholar
[11]
Bertolini JA, Favaro R, Zhu Y, Pagin M, Ngan CY, Wong CH, Tjong H, Vermunt MW, Martynoga B, Barone C (2019) Mapping the global chromatin connectivity network for Sox2 function in neural stem cell maintenance. Cell Stem Cell 24:462–476
CrossRef Google scholar
[12]
Bhan S, Negi SS, Shao C, Glazer CA, Chuang A, Gaykalova DA, Sun W, Sidransky D, Ha PK, Califano JA (2011) BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer. Clin Cancer Res 17:4267–4276
CrossRef Google scholar
[13]
Cai Z, Cao C, Ji L, Ye R, Wang D, Xia C, Wang S, Du Z, Hu N, Yu X (2020) RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582:432–437
CrossRef Google scholar
[14]
Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A, Chern E (2017) Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/betacatenin pathway. Oncotarget 8:2604–2616
CrossRef Google scholar
[15]
Cheema Z, Hari-Gupta Y, Kita GX, Farrar D, Seddon I, Corr J, Klenova E (2014) Expression of the cancer-testis antigen BORIS correlates with prostate cancer. Prostate 74:164–176
CrossRef Google scholar
[16]
Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D (2012) SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS ONE 7:e36326
CrossRef Google scholar
[17]
Cheng J, Li W, Kang B, Zhou Y, Song J, Dan S, Yang Y, Zhang X, Li J, Yin S (2015) Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat Commun 6:7209
CrossRef Google scholar
[18]
Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelialmesenchymal transdifferentiation. Cancer Res 70:10433–10444
CrossRef Google scholar
[19]
D’Arcy V, Pore N, Docquier F, Abdullaev ZK, Chernukhin I, Kita GX, Rai S, Smart M, Farrar D, Pack S (2008) BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours. Br J Cancer 98:571–579
CrossRef Google scholar
[20]
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM (2019) DNA loop extrusion by human cohesin. Science 366:1338–1345
CrossRef Google scholar
[21]
de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, Krijger PH, Festuccia N, Nora EP, Welling M (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:227–231
CrossRef Google scholar
[22]
Debruyne DN, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, Huang H, Moreau L, McLane M, Day DS (2019) BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature 572:676–680
CrossRef Google scholar
[23]
Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602–616
CrossRef Google scholar
[24]
Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, Abuhashem A, Cavaliere P, Aronson B, Shah V (2019) KLF4 is involved in the organization and regulation of pluripotencyassociated three-dimensional enhancer networks. Nat Cell Biol 21:1179–1190
CrossRef Google scholar
[25]
D’Ippolito AM, McDowell IC, Barrera A, Hong LK, Leichter SM, Bartelt LC, Vockley CM, Majoros WH, Safi A, Song L (2018) Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst 7:146–160
CrossRef Google scholar
[26]
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380
CrossRef Google scholar
[27]
Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336
CrossRef Google scholar
[28]
Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353
CrossRef Google scholar
[29]
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–387
CrossRef Google scholar
[30]
Dunican DS, Mjoseng HK, Duthie L, Flyamer IM, Bickmore WA, Meehan RR (2020) Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol 18:25
CrossRef Google scholar
[31]
Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447
CrossRef Google scholar
[32]
Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38:452–464
CrossRef Google scholar
[33]
Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, Ren B (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26:1345–1348
CrossRef Google scholar
[34]
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB (2020) Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell 54:302–316
CrossRef Google scholar
[35]
Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33
CrossRef Google scholar
[36]
Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039
CrossRef Google scholar
[37]
Fischedick G, Wu G, Adachi K, Arauzo-Bravo MJ, Greber B, Radstaak M, Kohler G, Tapia N, Iacone R, Anastassiadis K (2014) Nanog induces hyperplasia without initiating tumors. Stem Cell Res 13:300–315
CrossRef Google scholar
[38]
Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science. https://doi.org/10.1126/science.aal2380
CrossRef Google scholar
[39]
Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:244–253
CrossRef Google scholar
[40]
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084
CrossRef Google scholar
[41]
Griessinger E, Moschoi R, Biondani G, Peyron JF (2017) Mitochondrial transfer in the leukemia microenvironment. Trends Cancer 3:828–839
CrossRef Google scholar
[42]
Grubert F, Srivas R, Spacek DV, Kasowski M, Ruiz-Velasco M, Sinnott-Armstrong N, Greenside P, Narasimha A, Liu Q, Geller B (2020) Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583:737–743
CrossRef Google scholar
[43]
Guarda A, Bolognese F, Bonapace IM, Badaracco G (2009) Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp Cell Res 315:1895–1903
CrossRef Google scholar
[44]
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644
CrossRef Google scholar
[45]
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
CrossRef Google scholar
[46]
Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldana-Meyer R, Reinberg D, Darzacq X, Tjian R (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell 76:395–411
CrossRef Google scholar
[47]
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol 208:33–52
CrossRef Google scholar
[48]
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947
CrossRef Google scholar
[49]
Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner JE, Young RA (2015) Convergence of developmental and oncogenic signaling pathways at transcriptional superenhancers. Mol Cell 58:362–370
CrossRef Google scholar
[50]
Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–1458
CrossRef Google scholar
[51]
Hnisz D, Schuijers J, Li CH, Young RA (2018) Regulation and dysregulation of chromosome structure in cancer. Annu Rev Cancer Biol 2:21–40
CrossRef Google scholar
[52]
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477
CrossRef Google scholar
[53]
Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540
CrossRef Google scholar
[54]
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G (2019) Why be one protein when you can affect many? The multiple roles of YB- 1 in lung cancer and mesothelioma. Front Cell Dev Biol 7:221
CrossRef Google scholar
[55]
Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V (2020) Large-scale topological changes restrain malignant progression in colorectal cancer. Cell 182:1474–1489
CrossRef Google scholar
[56]
Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L (2015) Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:748–757
CrossRef Google scholar
[57]
Kaufhold S, Garban H, Bonavida B (2016) Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res 35:84
CrossRef Google scholar
[58]
Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (2019) Human cohesin compacts DNA by loop extrusion. Science 366:1345–1349
CrossRef Google scholar
[59]
Knappe N, Novak D, Weina K, Bernhardt M, Reith M, Larribere L, Holzel M, Tuting T,Gebhardt C, Umansky V (2016) Directed dedifferentiation using partial reprogramming induces invasive phenotype in melanoma cells. Stem Cells 34:832–846
CrossRef Google scholar
[60]
Krijger PH, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T (2016) Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18:597–610
CrossRef Google scholar
[61]
Laugesen A, Helin K (2014) Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14:735–751
CrossRef Google scholar
[62]
Lemaitre C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 144:111–122
CrossRef Google scholar
[63]
Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell selfrenewal. Cell Stem Cell 1:403–415
CrossRef Google scholar
[64]
Li A, Zhou T, Guo L, Si J (2010) Collagen type I regulates betacatenin tyrosine phosphorylation and nuclear translocation to promote migration and proliferation of gastric carcinoma cells. Oncol Rep 23:1247–1255
CrossRef Google scholar
[65]
Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35:940–950
CrossRef Google scholar
[66]
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293
CrossRef Google scholar
[67]
Link PA, Zhang W, Odunsi K, Karpf AR (2013) BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun 13:6
[68]
Lorzadeh A, Bilenky M, Hammond C, Knapp D, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M (2016) Nucleosome density ChIP-seq identifies distinct chromatin modification signatures associated with MNase accessibility. Cell Rep 17:2112–2124
CrossRef Google scholar
[69]
Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 99:6806–6811
CrossRef Google scholar
[70]
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334
CrossRef Google scholar
[71]
Lu X, Mazur SJ, Lin T, Appella E, Xu Y (2014) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33:2655–2664
CrossRef Google scholar
[72]
Maass PG, Barutcu AR, Rinn JL (2019) Interchromosomal interactions: a genomic love story of kissing chromosomes. J Cell Biol 218:27–38
CrossRef Google scholar
[73]
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M (2008) The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 133:704–715
CrossRef Google scholar
[74]
Manukyan M, Singh PB (2014) Epigenome rejuvenation: HP1beta mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep 4:4789
CrossRef Google scholar
[75]
Marucci L, Pedone E, Di Vicino U, Sanuy-Escribano B, Isalan M, Cosma MP (2014) beta-Catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep 8:1686–1696
CrossRef Google scholar
[76]
McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genomescale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874
CrossRef Google scholar
[77]
Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344
CrossRef Google scholar
[78]
Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116
CrossRef Google scholar
[79]
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45
CrossRef Google scholar
[80]
Monahan K, Horta A, Lomvardas S (2019) LHX2- and LDB1- mediated trans interactions regulate olfactory receptor choice. Nature 565:448–453
CrossRef Google scholar
[81]
Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922
CrossRef Google scholar
[82]
Nacht AS, Ferrari R, Zaurin R, Scabia V, Carbonell-Caballero J, Le Dily F, Quilez J, Leopoldi A, Brisken C, Beato M (2019) C/EBPalpha mediates the growth inhibitory effect of progestins on breast cancer cells. EMBO J 38:e101426
CrossRef Google scholar
[83]
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385
CrossRef Google scholar
[84]
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944
CrossRef Google scholar
[85]
Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ (2018) Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep 22:2615–2627
CrossRef Google scholar
[86]
Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242
CrossRef Google scholar
[87]
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–677
CrossRef Google scholar
[88]
Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237
CrossRef Google scholar
[89]
Pagliara S, Franze K, McClain CR, Wylde G, Fisher CL, Franklin RJM, Kabla AJ, Keyser UF, Chalut KJ (2014) Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat Mater 13:638–644
CrossRef Google scholar
[90]
Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104:15619–15624
CrossRef Google scholar
[91]
Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343
CrossRef Google scholar
[92]
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M (2010) Molecular maps of the reorganization of genomenuclear lamina interactions during differentiation. Mol Cell 38:603–613
CrossRef Google scholar
[93]
Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB, Zorov DB (2015) Intercellular transfer of mitochondria. Biochemistry 80:542–548
CrossRef Google scholar
[94]
Pujadas E, Feinberg AP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148:1123–1131
CrossRef Google scholar
[95]
Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT (2019) Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock. Proc Natl Acad Sci USA 116:19431–19439
CrossRef Google scholar
[96]
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V,Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49:1522–1528
CrossRef Google scholar
[97]
Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jacome-Lopez K, Nora EP, Bruneau BG, Tsirigos A, Furlan- MMagaril J, Skok (2019) RNA interactions are essential for CTCF-mediated genome organization. Mol Cell 76:412–422
CrossRef Google scholar
[98]
Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236
CrossRef Google scholar
[99]
Schlesinger S, Kaffe B, Melcer S, Aguilera JD, Sivaraman DM, Kaplan T, Meshorer E (2017) A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res 45:12181–12194
CrossRef Google scholar
[100]
Shahzad U, Li C, Johnston M, Wang JJ, Sabha N, Varn FS, Riemenschneider A, Krumholtz S, Meda P, Smith CA (2020) CASCADES, a novel SOX2 super-enhancer associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma multiforme. bioRxiv. https://doi.org/10.1101/2020.09.05.284349
CrossRef Google scholar
[101]
Shakya A, Callister C, Goren A, Yosef N, Garg N, Khoddami V, Nix D, Regev A, Tantin D (2015) Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 35:1014–1025
CrossRef Google scholar
[102]
Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q (2012) Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56:1004–1014
CrossRef Google scholar
[103]
Shibata H, Komura S, Yamada Y, Sankoda N, Tanaka A, Ukai T, Kabata M, Sakurai S, Kuze B, Woltjen K (2018) In vivo reprogramming drives Kras-induced cancer development. Nat Commun 9:2081
CrossRef Google scholar
[104]
Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, Jangi M, Giallourakis CC, Sharp PA, Young RA (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350:978–981
CrossRef Google scholar
[105]
Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959
CrossRef Google scholar
[106]
Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626
CrossRef Google scholar
[107]
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64
CrossRef Google scholar
[108]
Szabo Q, Donjon A, Jerkovic I, Papadopoulos GL, Cheutin T, Bonev B, Nora EP, Bruneau BG, Bantignies F, Cavalli G (2020) Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat Genet 52:1151–1157
CrossRef Google scholar
[109]
Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346:1238–1242
CrossRef Google scholar
[110]
Timp W, Bravo HC, McDonald OG, Goggins M, Umbricht C, Zeiger M, Feinberg AP, Irizarry RA (2014) Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 6:61
CrossRef Google scholar
[111]
Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947
CrossRef Google scholar
[112]
Underwood JM, Becker KA, Stein GS, Nickerson JA (2017) The ultrastructural signature of human embryonic stem cells. J Cell Biochem 118:764–774
CrossRef Google scholar
[113]
van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791
CrossRef Google scholar
[114]
Vian L, Pekowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N (2018) The energetics and physiological impact of cohesin extrusion. Cell 173:1165–1178
CrossRef Google scholar
[115]
Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411
CrossRef Google scholar
[116]
Wang MC, Jiao M, Wu T, Jing L, Cui J, Guo H, Tian T, Ruan ZP, Wei YC, Jiang LL (2016) Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study. Oncotarget 7:9586–9599
CrossRef Google scholar
[117]
Wang H, Xu X, Nguyen CM, Liu Y, Gao Y, Lin X, Daley T, Kipniss NH, La Russa M, Qi LS (2018) CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175:1405–1417
CrossRef Google scholar
[118]
Wang B, Kong L, Babu D, Choudhary R, Fam W, Tng JQ, Goh Y, Liu X, Song FF, Chia P (2020) Three-dimensional genome organization maps in normal haematopoietic stem cells and acute myeloid leukemia. bioRxiv. https://doi.org/10.1101/2020.04.18.047738
CrossRef Google scholar
[119]
Wei X, Xiang Y, Abnousi A, Sun T, Lin X, Li W, Hu M, Diao Y (2020) HiCAR: a robust and sensitive multi-omic co-assay for simultaneous measurement of transcriptome, chromatin accessibility, and cis-regulatory chromatin contacts. bioRxiv. https://doi.org/10.1101/2020.11.02.366062
CrossRef Google scholar
[120]
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL (2017) YY1 Is a structural regulator of enhancer-promoter loops. Cell 171:1573–1588
CrossRef Google scholar
[121]
Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–250
CrossRef Google scholar
[122]
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319
CrossRef Google scholar
[123]
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J (2018) KLF4, a gene regulating prostate stem cell homeostasis, is a barrier to malignant progression and predictor of good prognosis in prostate cancer. Cell Rep 25:3006–3020
CrossRef Google scholar
[124]
Yochum GS, Sherrick CM, Macpartlin M, Goodman RH (2010) A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5’ and 3’ Wnt responsive enhancers. Proc Natl Acad Sci USA 107:145–150
CrossRef Google scholar
[125]
You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20
CrossRef Google scholar
[126]
Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607
CrossRef Google scholar
[127]
Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(1313 KB)

Accesses

Citations

Detail

Sections
Recommended

/