RESEARCH ARTICLE

Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda

  • Furong Gui 1,12 ,
  • Tianming Lan 2,9 ,
  • Yue Zhao 1 ,
  • Wei Guo 3,15 ,
  • Yang Dong 1,12 ,
  • Dongming Fang 2 ,
  • Huan Liu 2,9 ,
  • Haimeng Li 2 ,
  • Hongli Wang 2 ,
  • Ruoshi Hao 12 ,
  • Xiaofang Cheng 5 ,
  • Yahong Li 16 ,
  • Pengcheng Yang 4 ,
  • Sunil Kumar Sahu 2 ,
  • Yaping Chen 1 ,
  • Le Cheng 7 ,
  • Shuqi He 1 ,
  • Ping Liu 5 ,
  • Guangyi Fan 6 ,
  • Haorong Lu 8,10 ,
  • Guohai Hu 8,10 ,
  • Wei Dong 2 ,
  • Bin Chen 1 ,
  • Yuan Jiang 18 ,
  • Yongwei Zhang 18 ,
  • Hanhong Xu 17 ,
  • Fei Lin 17 ,
  • Bernard Slipper 19 ,
  • Alisa Postma 19 ,
  • Matthew Jackson 19 ,
  • Birhan Addisie Abate 20 ,
  • Kassahun Tesfaye 20,21 ,
  • Aschalew Lemma Demie 20 ,
  • Meseret Destaw Bayeleygne 20 ,
  • Dawit Tesfaye Degefu 22 ,
  • Feng Chen 5 ,
  • Paul K. Kuria 23 ,
  • Zachary M. Kinyua 23 ,
  • Tong-Xian Liu 13 ,
  • Huanming Yang 10,11 ,
  • Fangneng Huang , 1,4 ,
  • Xin Liu , 2,10 ,
  • Jun Sheng , 1,12 ,
  • Le Kang , 3,4,15
Expand
  • 1. State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
  • 2. State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
  • 3. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
  • 5. MGI, BGI-Shenzhen, Shenzhen 518083, China
  • 6. BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
  • 7. BGI-Yunnan, No. 389 Haiyuan Road, High-tech Development Zone, Kunming 650106, China
  • 8. China National GeneBank, Jinsha Road, Dapeng New District, Shenzhen 518120, China
  • 9. Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
  • 10. Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
  • 11. Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
  • 12. Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming 650201, China
  • 13. College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
  • 14. Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
  • 15. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
  • 16. Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
  • 17. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
  • 18. BGI-Americas, One Broadway, 14th Floor, Cambridge, MA 02142, USA
  • 19. Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
  • 20. Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
  • 21. College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
  • 22. Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Melkassa, Addis Ababa, Ethiopia
  • 23. Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00800, Kenya

Received date: 03 Jun 2020

Accepted date: 15 Sep 2020

Published date: 15 Jul 2022

Copyright

2020 The Author(s)

Abstract

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared resequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.

Cite this article

Furong Gui , Tianming Lan , Yue Zhao , Wei Guo , Yang Dong , Dongming Fang , Huan Liu , Haimeng Li , Hongli Wang , Ruoshi Hao , Xiaofang Cheng , Yahong Li , Pengcheng Yang , Sunil Kumar Sahu , Yaping Chen , Le Cheng , Shuqi He , Ping Liu , Guangyi Fan , Haorong Lu , Guohai Hu , Wei Dong , Bin Chen , Yuan Jiang , Yongwei Zhang , Hanhong Xu , Fei Lin , Bernard Slipper , Alisa Postma , Matthew Jackson , Birhan Addisie Abate , Kassahun Tesfaye , Aschalew Lemma Demie , Meseret Destaw Bayeleygne , Dawit Tesfaye Degefu , Feng Chen , Paul K. Kuria , Zachary M. Kinyua , Tong-Xian Liu , Huanming Yang , Fangneng Huang , Xin Liu , Jun Sheng , Le Kang . Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda[J]. Protein & Cell, 2022 , 13(7) : 513 -531 . DOI: 10.1007/s13238-020-00795-7

1
Adamczyk JJ Jr, Holloway JW, Leonard BR, Graves I (1997) Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. J Cotton Sci 1:21–28

2
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19 (9):1655–1664

DOI

3
Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server):W369–W373

DOI

4
Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11

DOI

5
Bock KW (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: anima plant arms-race and co-evolution. Biochem Pharmacol 99(1):11–17

DOI

6
CABI (2019) Data sheet Spodoptera frugiperda(fall armyworm). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/29810#94987198-9f50-41738bbd30bd93840e73?tdsourcetag=s_pcqq_aiomsg. Accessed 26 April 2019

7
Chang J, Yoon I, Lee J, Kim K, An J, Kim K (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105

DOI

8
Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H (2016) The draft genome of whitefly Bemisia tabaciMEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110

DOI

9
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, Feng L, Li W, Chen Z, Guo H (2017) Genomic adaptation to polyphagy and pesticides in a major East Asian noctuid pest. Nat Ecol Evol 1(11):1747–1756

DOI

10
Daly H, Doyen JT, Purcell AH (1998) Introduction to insect biology and diversity. Oxford University Press, New York

11
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST (2011) The variant call format and VCF tools. Bioinformatics 27(15):2156–2158

DOI

12
Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensiscry1Ac7 and Serratia marcescenschiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810

DOI

13
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP (2017) De novo assembly of the Aedes aegyptigenome using Hi-C yields chromosome-length scaffolds. Science 356(6333):92–95

DOI

14
Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

DOI

15
Erlandson MA (2009) Genetic variation in field populations of baculoviruses: mechanisms for generating variation and its potential role in baculovirus epizootiology. Virol Sin 24(5):458–469

DOI

16
Farmer B (2019) Fall armyworm marches on as pest that devastated African crops spreads in Asia. Telegraph. https://www.telegraph. co.uk/news/2019/01/09/fall-armyworm-marches-pestdevastated-african-crops-spreads/. Accessed 26 April 2019

17
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

DOI

18
Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e165632

DOI

19
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, Hilliou F, Durand N, Montagné N, Darboux I (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges . Sci Rep 7:11816

DOI

20
Hayes JD, Pulford DJ (2008) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance Part I. Crit Rev Biochem Mol 30(6):445–520

DOI

21
Herraiz T, Guillen H, Aran V, Idle J, Gonzalez F (2006) Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated β-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6. Toxicol Appl Pharmacol 216(3):387–398

DOI

22
Hinds WE, Dew JA (1915) The grass worm or fall army worm. Ala Agric Exp Stn Bull 186:61–92

23
Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, Qu S, Mei X, Chen H, Yu T (2017) A reference human genome dataset of the BGISEQ-500 sequencer. GigaScience 6(5):1–9

DOI

24
Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsière T(2008) Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res/Rev Mutat Res 658(3):215–233

DOI

25
Insecticide Resistance Action Committee, IRAC (2019) IRAC susceptibility test methods series: method No. 018, version 3.4. www.irac-online.org. Accessed 13 Dec 2019

26
Jing DP, Guo JF, Jiang YY, Zhao JZ, Sethi A, He KL, Wang ZY (2019) Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci 27(4):1–11

DOI

27
Juárez ML, Schöfl G, Vera MT, Vilardi JC, Murúa MG, Willink E, Hänniger S, Heckel DG, Groot AT (2014) Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol Exp Appl 152(3):182–199

DOI

28
Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (2014) A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104(2):134–143

DOI

29
Kielbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21 (3):487–493

DOI

30
Koenig C, Bretschneider A, Heckel DG, Grosse-Wilde E, Hansson BS, Vogel H (2015) The plastic response of Manduca sexta to host and non-host plants. Insect Biochem Mol Biol 63:72–85

DOI

31
Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform 32(11):1–14

DOI

32
Lee T, Guo H, Wang X, Kim C, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15(1):162

DOI

33
Liu BH, Shi YJ, Yuan JY, Hu XS, Zhang H, Li N, Li ZY, Chen YX, Mu DS, Fan W (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv. https://www.researchgate.net/publication/255722390

34
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

DOI

35
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R(2009) The sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079

DOI

36
Li XJ, Wu MF, Ma J, Gao BY, Wu QL, Chen AD, Liu J, Jiang YY, Zhai BP, Jason RE (2019) Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach . Pest Manag Sci 76(2):454–463

DOI

37
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

DOI

38
Liu S, Hansen MM (2017) PSMC (pairwise sequentially Markovian coalescent) analysis of RAD (restriction site associated DNA) sequencing data. Mol Ecol Resour 17(4):631–641

DOI

39
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memoryefficient short-read de novo assembler. GigaScience 1:18

DOI

40
Mallapur CP, Naik AK, Hagari S, Prabhu ST, Patil PK (2018) Status of alien pest fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize in Northern Karnataka. J Entomol Zool Stud 6:432–436

41
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

DOI

42
Meagher RL, Nagoshi RN (2012) Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann Entomol Soc Am 105(3):462–470

DOI

43
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300

DOI

44
Morillo F, Notz A (2001) Resistance of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) to lambdacyhalothrin and methomyl. Entomotropica 16(2):79–87

45
Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R (2019) Genetic comparisons of fall armyworm populations from 11 countries spanning Sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 9:8311

DOI

46
Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL (2018) Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci Rep 8:3710

DOI

47
Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, Nagoshi BY, Mota-Sanchez D (2020) Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci Rep 10:1421

DOI

48
Nagoshi RN, Meagher RL (2004) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87(4):440–449

DOI

49
Nam K, Gimenez S, Hilliou F, Blanco CA, Hänniger S, Bretaudeau A, Legeai F, Nègre N, d’Alencon E (2019) Adaptation by copy number variation increases pesticide resistance in fall armyworms . bioRxiv. https://www.biorxiv.org/content/https://doi.org/10.1101/812958v1

DOI

50
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d’Alençon E (2018) Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae). bioRxiv. https://www.biorxiv.org/content/https://doi.org/10.1101/452870v2

DOI

51
Nandakumar S, Ma H, Khan AS (2017) Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line. Genome Announc 5(34):e00829–e917

DOI

52
Nowell RW, Elsworth B, Oostra V, Zwaan BJ, Wheat CW, Saastamoinen M, Saccheri IJ, van T Hof AE, Wasik BR, Connahs H (2017) A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana . GigaScience 6(7):1–7

DOI

53
Pashley DP (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79(6):898–904

DOI

54
Pavlidis P, Ivković D, Stamatakis A, Alachiotis N (2013) SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30(9):2224–2234

DOI

55
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652

DOI

56
Pickrell J, Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8 (11):e1002967

DOI

57
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

DOI

58
Saha S, Bridges S, Magbanua ZV, Peterson DG (2008) Empirical comparison of ab initio repeat finding programs . Nucleic Acids Res 36(7):2284–2294

DOI

59
Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

DOI

60
Santos-Amaya O, Rodrigues J, Souza T, Tavares C, Campos S, Guedes R, Pereira E (2016) Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance and cross-resistance to other transgenic events. Sci Rep 5:18243

DOI

61
Satoh T, Hosokawa M (2009) Carboxylesterases: structure, function and polymorphism. Biomol Ther 17(4):335–347

DOI

62
Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–86

DOI

63
Tay WT, Mahon RJ, Heckel DG, Walsh TK, Downes S, James WJ, Lee S, Reineke A, Williams AK, Gordon KHJ (2015) Insect resistance to Bacillus thuringiensis toxin cry2ab is conferred by mutations in an abc transporter subfamily a protein. PLoS Genet 11:e1005534

DOI

64
Triant DA, Cinel SD, Kawahara AY (2018) Lepidoptera genomes: current knowledge, gaps and future directions. Curr Opin Insect Sci 25:99–105

DOI

65
Unbehend M, Hänniger S, Vásquez GM, Juárez ML, Reisig D, McNeil JN, Meagher RL, Jenkins DA, Heckel DG, Groot AT (2014) Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males topheromone lures. PLoS ONE 9(2):e89255

DOI

66
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

DOI

67
Wang O, Chin R, Cheng X, Wu MKY, Mao Q, Tang J, Sun Y, Anderson E, Lam HK, Chen D (2019) Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res 29(5):798–808

DOI

68
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49

DOI

69
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB (2017) Direct determination of diploid genome sequences. Genome Res 27 (5):757–767

DOI

70
Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, Coates BS, Pavinato VAC, Michel A (2017) Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem Mol 2017:102917

DOI

71
Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid pesticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci USA 110(41):16532–16537

DOI

72
Wu QL, He LM, Shen XJ, Jiang YY, Liu J, Hu G, Wu KM (2019) Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River Valley of China. Insects 10:298

DOI

73
Xiao HM, Ye XH, Xu HX, Mei Y, Yang Y, Chen X, Yang YJ, Liu T, Yu YY, Yang WF (2020) The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol Ecol Resour 20(4):1050–1068

DOI

74
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis . Am J Hum Genet 88(1):76–82

DOI

75
Yang Z(1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

DOI

76
You M, Yue Z, He W, Yang X, Yang G, Xie M, Zhan D, Baxter SW, Vasseur L, Gurr GM (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45 (2):220–225

DOI

77
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Xu P, Wilson K, Withers A, Jones CM (2019) High-depth resequencing reveals hybrid population and pesticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. bioRxiv 2019: 813154. https://www.biorxiv.org/content/10.1101/813154v2

DOI

78
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Li Z, Xu P, Wilson K, Withers A (2020) Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13219

DOI

79
Zhu F, Moural TW, Shah K, Palli SR (2013) Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genomics 14(1):174

DOI

Outlines

/