Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda
Furong Gui, Tianming Lan, Yue Zhao, Wei Guo, Yang Dong, Dongming Fang, Huan Liu, Haimeng Li, Hongli Wang, Ruoshi Hao, Xiaofang Cheng, Yahong Li, Pengcheng Yang, Sunil Kumar Sahu, Yaping Chen, Le Cheng, Shuqi He, Ping Liu, Guangyi Fan, Haorong Lu, Guohai Hu, Wei Dong, Bin Chen, Yuan Jiang, Yongwei Zhang, Hanhong Xu, Fei Lin, Bernard Slipper, Alisa Postma, Matthew Jackson, Birhan Addisie Abate, Kassahun Tesfaye, Aschalew Lemma Demie, Meseret Destaw Bayeleygne, Dawit Tesfaye Degefu, Feng Chen, Paul K. Kuria, Zachary M. Kinyua, Tong-Xian Liu, Huanming Yang, Fangneng Huang, Xin Liu, Jun Sheng, Le Kang
Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda
The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared resequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.
Spodoptera frugiperda / chromosome-level genome / population differentiation / cytochrome p450 / pesticides
[1] |
Adamczyk JJ Jr, Holloway JW, Leonard BR, Graves I (1997) Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. J Cotton Sci 1:21–28
|
[2] |
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19 (9):1655–1664
CrossRef
Google scholar
|
[3] |
Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server):W369–W373
CrossRef
Google scholar
|
[4] |
Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11
CrossRef
Google scholar
|
[5] |
Bock KW (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: anima plant arms-race and co-evolution. Biochem Pharmacol 99(1):11–17
CrossRef
Google scholar
|
[6] |
CABI (2019) Data sheet Spodoptera frugiperda(fall armyworm). Invasive Species Compendium.
|
[7] |
Chang J, Yoon I, Lee J, Kim K, An J, Kim K (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105
CrossRef
Google scholar
|
[8] |
Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H
CrossRef
Google scholar
|
[9] |
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, Feng L, Li W, Chen Z, Guo H
CrossRef
Google scholar
|
[10] |
Daly H, Doyen JT, Purcell AH (1998) Introduction to insect biology and diversity. Oxford University Press, New York
|
[11] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST
CrossRef
Google scholar
|
[12] |
Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensiscry1Ac7 and Serratia marcescenschiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810
CrossRef
Google scholar
|
[13] |
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP
CrossRef
Google scholar
|
[14] |
Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868
CrossRef
Google scholar
|
[15] |
Erlandson MA (2009) Genetic variation in field populations of baculoviruses: mechanisms for generating variation and its potential role in baculovirus epizootiology. Virol Sin 24(5):458–469
CrossRef
Google scholar
|
[16] |
Farmer B (2019) Fall armyworm marches on as pest that devastated African crops spreads in Asia. Telegraph.
|
[17] |
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152
CrossRef
Google scholar
|
[18] |
Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e165632
CrossRef
Google scholar
|
[19] |
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, Hilliou F, Durand N, Montagné N, Darboux I
CrossRef
Google scholar
|
[20] |
Hayes JD, Pulford DJ (2008) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance Part I. Crit Rev Biochem Mol 30(6):445–520
CrossRef
Google scholar
|
[21] |
Herraiz T, Guillen H, Aran V, Idle J, Gonzalez F (2006) Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated β-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6. Toxicol Appl Pharmacol 216(3):387–398
CrossRef
Google scholar
|
[22] |
Hinds WE, Dew JA (1915) The grass worm or fall army worm. Ala Agric Exp Stn Bull 186:61–92
|
[23] |
Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, Qu S, Mei X, Chen H, Yu T
CrossRef
Google scholar
|
[24] |
Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsière T(2008) Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res/Rev Mutat Res 658(3):215–233
CrossRef
Google scholar
|
[25] |
Insecticide Resistance Action Committee, IRAC (2019) IRAC susceptibility test methods series: method No. 018, version 3.4. www.irac-online.org. Accessed 13 Dec 2019
|
[26] |
Jing DP, Guo JF, Jiang YY, Zhao JZ, Sethi A, He KL, Wang ZY (2019) Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci 27(4):1–11
CrossRef
Google scholar
|
[27] |
Juárez ML, Schöfl G, Vera MT, Vilardi JC, Murúa MG, Willink E, Hänniger S, Heckel DG, Groot AT (2014) Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol Exp Appl 152(3):182–199
CrossRef
Google scholar
|
[28] |
Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (2014) A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104(2):134–143
CrossRef
Google scholar
|
[29] |
Kielbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21 (3):487–493
CrossRef
Google scholar
|
[30] |
Koenig C, Bretschneider A, Heckel DG, Grosse-Wilde E, Hansson BS, Vogel H (2015) The plastic response of Manduca sexta to host and non-host plants. Insect Biochem Mol Biol 63:72–85
CrossRef
Google scholar
|
[31] |
Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform 32(11):1–14
CrossRef
Google scholar
|
[32] |
Lee T, Guo H, Wang X, Kim C, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15(1):162
CrossRef
Google scholar
|
[33] |
Liu BH, Shi YJ, Yuan JY, Hu XS, Zhang H, Li N, Li ZY, Chen YX, Mu DS, Fan W (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv.
|
[34] |
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760
CrossRef
Google scholar
|
[35] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R(2009) The sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079
CrossRef
Google scholar
|
[36] |
Li XJ, Wu MF, Ma J, Gao BY, Wu QL, Chen AD, Liu J, Jiang YY, Zhai BP, Jason RE
CrossRef
Google scholar
|
[37] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO
CrossRef
Google scholar
|
[38] |
Liu S, Hansen MM (2017) PSMC (pairwise sequentially Markovian coalescent) analysis of RAD (restriction site associated DNA) sequencing data. Mol Ecol Resour 17(4):631–641
CrossRef
Google scholar
|
[39] |
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y
CrossRef
Google scholar
|
[40] |
Mallapur CP, Naik AK, Hagari S, Prabhu ST, Patil PK (2018) Status of alien pest fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize in Northern Karnataka. J Entomol Zool Stud 6:432–436
|
[41] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M
CrossRef
Google scholar
|
[42] |
Meagher RL, Nagoshi RN (2012) Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann Entomol Soc Am 105(3):462–470
CrossRef
Google scholar
|
[43] |
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300
CrossRef
Google scholar
|
[44] |
Morillo F, Notz A (2001) Resistance of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) to lambdacyhalothrin and methomyl. Entomotropica 16(2):79–87
|
[45] |
Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R (2019) Genetic comparisons of fall armyworm populations from 11 countries spanning Sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 9:8311
CrossRef
Google scholar
|
[46] |
Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL (2018) Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci Rep 8:3710
CrossRef
Google scholar
|
[47] |
Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, Nagoshi BY, Mota-Sanchez D (2020) Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci Rep 10:1421
CrossRef
Google scholar
|
[48] |
Nagoshi RN, Meagher RL (2004) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87(4):440–449
CrossRef
Google scholar
|
[49] |
Nam K, Gimenez S, Hilliou F, Blanco CA, Hänniger S, Bretaudeau A, Legeai F, Nègre N, d’Alencon E (2019) Adaptation by copy number variation increases pesticide resistance in fall armyworms . bioRxiv.
CrossRef
Google scholar
|
[50] |
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d’Alençon E (2018) Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae). bioRxiv.
CrossRef
Google scholar
|
[51] |
Nandakumar S, Ma H, Khan AS (2017) Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line. Genome Announc 5(34):e00829–e917
CrossRef
Google scholar
|
[52] |
Nowell RW, Elsworth B, Oostra V, Zwaan BJ, Wheat CW, Saastamoinen M, Saccheri IJ, van T Hof AE, Wasik BR, Connahs H
CrossRef
Google scholar
|
[53] |
Pashley DP (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79(6):898–904
CrossRef
Google scholar
|
[54] |
Pavlidis P, Ivković D, Stamatakis A, Alachiotis N (2013) SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30(9):2224–2234
CrossRef
Google scholar
|
[55] |
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B
CrossRef
Google scholar
|
[56] |
Pickrell J, Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8 (11):e1002967
CrossRef
Google scholar
|
[57] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ
CrossRef
Google scholar
|
[58] |
Saha S, Bridges S, Magbanua ZV, Peterson DG (2008) Empirical comparison of ab initio repeat finding programs . Nucleic Acids Res 36(7):2284–2294
CrossRef
Google scholar
|
[59] |
Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248
CrossRef
Google scholar
|
[60] |
Santos-Amaya O, Rodrigues J, Souza T, Tavares C, Campos S, Guedes R, Pereira E (2016) Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance and cross-resistance to other transgenic events. Sci Rep 5:18243
CrossRef
Google scholar
|
[61] |
Satoh T, Hosokawa M (2009) Carboxylesterases: structure, function and polymorphism. Biomol Ther 17(4):335–347
CrossRef
Google scholar
|
[62] |
Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–86
CrossRef
Google scholar
|
[63] |
Tay WT, Mahon RJ, Heckel DG, Walsh TK, Downes S, James WJ, Lee S, Reineke A, Williams AK, Gordon KHJ (2015) Insect resistance to Bacillus thuringiensis toxin cry2ab is conferred by mutations in an abc transporter subfamily a protein. PLoS Genet 11:e1005534
CrossRef
Google scholar
|
[64] |
Triant DA, Cinel SD, Kawahara AY (2018) Lepidoptera genomes: current knowledge, gaps and future directions. Curr Opin Insect Sci 25:99–105
CrossRef
Google scholar
|
[65] |
Unbehend M, Hänniger S, Vásquez GM, Juárez ML, Reisig D, McNeil JN, Meagher RL, Jenkins DA, Heckel DG, Groot AT (2014) Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males topheromone lures. PLoS ONE 9(2):e89255
CrossRef
Google scholar
|
[66] |
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164
CrossRef
Google scholar
|
[67] |
Wang O, Chin R, Cheng X, Wu MKY, Mao Q, Tang J, Sun Y, Anderson E, Lam HK, Chen D
CrossRef
Google scholar
|
[68] |
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H
CrossRef
Google scholar
|
[69] |
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB (2017) Direct determination of diploid genome sequences. Genome Res 27 (5):757–767
CrossRef
Google scholar
|
[70] |
Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, Coates BS, Pavinato VAC, Michel A (2017) Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem Mol 2017:102917
CrossRef
Google scholar
|
[71] |
Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid pesticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci USA 110(41):16532–16537
CrossRef
Google scholar
|
[72] |
Wu QL, He LM, Shen XJ, Jiang YY, Liu J, Hu G, Wu KM (2019) Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River Valley of China. Insects 10:298
CrossRef
Google scholar
|
[73] |
Xiao HM, Ye XH, Xu HX, Mei Y, Yang Y, Chen X, Yang YJ, Liu T, Yu YY, Yang WF
CrossRef
Google scholar
|
[74] |
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis . Am J Hum Genet 88(1):76–82
CrossRef
Google scholar
|
[75] |
Yang Z(1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556
CrossRef
Google scholar
|
[76] |
You M, Yue Z, He W, Yang X, Yang G, Xie M, Zhan D, Baxter SW, Vasseur L, Gurr GM
CrossRef
Google scholar
|
[77] |
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Xu P, Wilson K, Withers A, Jones CM
CrossRef
Google scholar
|
[78] |
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Li Z, Xu P, Wilson K, Withers A
CrossRef
Google scholar
|
[79] |
Zhu F, Moural TW, Shah K, Palli SR (2013) Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genomics 14(1):174
CrossRef
Google scholar
|
/
〈 | 〉 |