HIGHLIGHT

First progeria monkey model generated using base editor

  • Pradeep Reddy 1 ,
  • Yanjiao Shao 1 ,
  • Reyna Hernandez-Benitez 1 ,
  • Estrella Nuñez Delicado 2 ,
  • Juan Carlos Izpisua Belmonte , 1
Expand
  • 1. Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
  • 2. Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Nº 135 12, Guadalupe 30107, Spain

Published date: 15 Dec 2020

Copyright

2020 The Author(s)

Cite this article

Pradeep Reddy , Yanjiao Shao , Reyna Hernandez-Benitez , Estrella Nuñez Delicado , Juan Carlos Izpisua Belmonte . First progeria monkey model generated using base editor[J]. Protein & Cell, 2020 , 11(12) : 862 -865 . DOI: 10.1007/s13238-020-00765-z

1
Aguado J, Sola-Carvajal A, Cancila V, Revêchon G, Ong PF, JonesWeinert CW, Arzt EW, Lattanzi G, Dreesen O (2019) Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria syndrome. Nat Commun 10:2055

DOI

2
Beyret E, Liao HK, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, Reddy P, Belmonte JC (2019) Single-dose CRISPR– Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med 119:1825

DOI

3
Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64

DOI

4
Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

DOI

5
Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P (2003) Recurrent de novo point mutations in lamin A cause HutchinsonGilford progeria syndrome. Nature 423:293–298

DOI

6
Fong LG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623

DOI

7
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471

DOI

8
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G (2019) Cellular senescence: defining a path forward. Cell 179:813–827

DOI

9
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

DOI

10
Liang P, Xie X, Zhi S, Sun H, Zhang X, Chen Y, Chen Y, Xiong Y, Ma W, Liu D (2019) Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 10:420

DOI

11
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225

DOI

12
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729–aaf8729

DOI

13
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

DOI

14
Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:1719–1733.e12

DOI

15
Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine 3:106ra107

DOI

16
Ribes MP, Gualda EG, Doherty GJ, Espín DM (2019) Targeting senescent cells in translational medicine. EMBO Mol Med 11:6

DOI

17
Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Rolas L, Barkaway A, Nourshargh S, Folgueras AR (2019) Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med 25:423–426

DOI

18
Suzuki K, Yamamoto M, Hernandez-Benitez R, Li Z, Wei C, Soligalla RD, Aizawa E, Hatanaka F, Kurita M, Reddy P (2019) Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res 21:121

DOI

19
Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang AP, Fang W, Ji W, Li W (2014) One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res 25:258–261

DOI

20
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350

DOI

21
Young SG, Yang SH, Davies BS, Jung HJ, Fong LG (2013) Targeting protein prenylation in progeria. Science Translational Medicine 5:171ps3–171ps3

DOI

22
Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF (2011) A human iPSC model of hutchinson gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Stem Cell 8:31–45

DOI

23
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665

DOI

24
Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, Li L, Yin S, Yang L, Hu H (2020) Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 533:420

DOI

25
Zuo E, Cai YJ, Li K, Wei Y, Wang BA, Sun Y, Liu Z, Liu J, Hu X, Wei W (2017) One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27:933

DOI

Outlines

/