First progeria monkey model generated using base editor

Pradeep Reddy, Yanjiao Shao, Reyna Hernandez-Benitez, Estrella Nuñez Delicado, Juan Carlos Izpisua Belmonte

PDF(161 KB)
PDF(161 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (12) : 862-865. DOI: 10.1007/s13238-020-00765-z
HIGHLIGHT
HIGHLIGHT

First progeria monkey model generated using base editor

Author information +
History +

Cite this article

Download citation ▾
Pradeep Reddy, Yanjiao Shao, Reyna Hernandez-Benitez, Estrella Nuñez Delicado, Juan Carlos Izpisua Belmonte. First progeria monkey model generated using base editor. Protein Cell, 2020, 11(12): 862‒865 https://doi.org/10.1007/s13238-020-00765-z

References

[1]
Aguado J, Sola-Carvajal A, Cancila V, Revêchon G, Ong PF, JonesWeinert CW, Arzt EW, Lattanzi G, Dreesen O (2019) Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria syndrome. Nat Commun 10:2055
CrossRef Google scholar
[2]
Beyret E, Liao HK, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, Reddy P, Belmonte JC (2019) Single-dose CRISPR– Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med 119:1825
CrossRef Google scholar
[3]
Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64
CrossRef Google scholar
[4]
Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027
CrossRef Google scholar
[5]
Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P (2003) Recurrent de novo point mutations in lamin A cause HutchinsonGilford progeria syndrome. Nature 423:293–298
CrossRef Google scholar
[6]
Fong LG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623
CrossRef Google scholar
[7]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef Google scholar
[8]
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G (2019) Cellular senescence: defining a path forward. Cell 179:813–827
CrossRef Google scholar
[9]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef Google scholar
[10]
Liang P, Xie X, Zhi S, Sun H, Zhang X, Chen Y, Chen Y, Xiong Y, Ma W, Liu D (2019) Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 10:420
CrossRef Google scholar
[11]
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
CrossRef Google scholar
[12]
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729–aaf8729
CrossRef Google scholar
[13]
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843
CrossRef Google scholar
[14]
Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:1719–1733.e12
CrossRef Google scholar
[15]
Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine 3:106ra107
CrossRef Google scholar
[16]
Ribes MP, Gualda EG, Doherty GJ, Espín DM (2019) Targeting senescent cells in translational medicine. EMBO Mol Med 11:6
CrossRef Google scholar
[17]
Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Rolas L, Barkaway A, Nourshargh S, Folgueras AR (2019) Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med 25:423–426
CrossRef Google scholar
[18]
Suzuki K, Yamamoto M, Hernandez-Benitez R, Li Z, Wei C, Soligalla RD, Aizawa E, Hatanaka F, Kurita M, Reddy P (2019) Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res 21:121
CrossRef Google scholar
[19]
Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang AP, Fang W, Ji W, Li W (2014) One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res 25:258–261
CrossRef Google scholar
[20]
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
CrossRef Google scholar
[21]
Young SG, Yang SH, Davies BS, Jung HJ, Fong LG (2013) Targeting protein prenylation in progeria. Science Translational Medicine 5:171ps3–171ps3
CrossRef Google scholar
[22]
Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF (2011) A human iPSC model of hutchinson gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Stem Cell 8:31–45
CrossRef Google scholar
[23]
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
CrossRef Google scholar
[24]
Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, Li L, Yin S, Yang L, Hu H (2020) Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 533:420
CrossRef Google scholar
[25]
Zuo E, Cai YJ, Li K, Wei Y, Wang BA, Sun Y, Liu Z, Liu J, Hu X, Wei W (2017) One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27:933
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(161 KB)

Accesses

Citations

Detail

Sections
Recommended

/