A practical guide to amplicon and metagenomic analysis of microbiome data
Received date: 04 Feb 2020
Accepted date: 10 Apr 2020
Published date: 15 May 2021
Copyright
Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and betadiversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a stepby-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.
Yong-Xin Liu , Yuan Qin , Tong Chen , Meiping Lu , Xubo Qian , Xiaoxuan Guo , Yang Bai . A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein & Cell, 2021 , 12(5) : 315 -330 . DOI: 10.1007/s13238-020-00724-8
1 |
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146
|
2 |
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J,Bruls T, Batto JM
|
3 |
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029
|
4 |
Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884
|
5 |
Bai Y,Müller DB, Srinivas G,Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S,Remus-Emsermann M
|
6 |
Bastian M, Heymann S, and Jacomy M (2009). Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media.
|
7 |
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25
|
8 |
Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh JY, Tong C
|
9 |
Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A,Dekas AE, Batzoglou S, Bhatt AS (2018) High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 36:1067–1075
|
10 |
Blin K, Weber T, Lee SY, Medema MH, Pascal Andreu V, de los Santos ELC, Del Carratore F (2018) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47:D625–D630
|
11 |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
|
12 |
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F
|
13 |
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J,Rivers AR, Eloe-Fadrosh EA
|
14 |
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
|
15 |
Caporaso JG, Kuczynski J, Stombaugh J,Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI
|
16 |
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242
|
17 |
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WFJ, Gomez- Exposito R, Elsayed SS
|
18 |
Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J
|
19 |
Chen Q, Jiang T, Liu Y-X, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J
|
20 |
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F,Tramontano M, Driessen M, Hercog R, Jung F-E
|
21 |
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9
|
22 |
de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS (2019) Human placenta has no microbiome but can contain potential pathogens. Nature 572:329–334
|
23 |
de Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AYM (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5:68
|
24 |
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
|
25 |
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998
|
26 |
Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482
|
27 |
Edwards J,Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920
|
28 |
Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16:e2003862
|
29 |
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y-g, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143
|
30 |
Field D,Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T,Thomson N, Allen MJ, Angiuoli SV
|
31 |
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G,Lipson KS, Knight R, Caporaso JG, Segata N
|
32 |
Fresia P, Antelo V, Salazar C, Giménez M,D’Alessandro B, Afshinnekoo E,Mason C,Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35
|
33 |
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152
|
34 |
Galkin F, Aliper A, Putin E, Kuznetsov I,Gladyshev VN, Zhavoronkov A (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv 507780
|
35 |
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500
|
36 |
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB
|
37 |
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257
|
38 |
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J, The Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476
|
39 |
Guo X, Zhang X, Qin Y, Liu Y-X, Zhang J, Zhang N, Wu K, Qu B, He Z, Wang X
|
40 |
Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y,Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389
|
41 |
Huang P,Zhang Y, Xiao K, Jiang F, Wang H, Tang D, Liu D, Liu B, Liu Y, He X
|
42 |
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957
|
43 |
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230
|
44 |
Ji P, Zhang Y, Wang J,Zhao F (2017) MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 8:14306
|
45 |
Jiang X,Li X, Yang L, Liu C, Wang Q, Chi W, Zhu H (2019) How microbes shape their communities? A microbial community model based on functional genes. Genom Proteom Bioinf 17:91–105
|
46 |
Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils: biogeography and cooccurrence patterns. Soil Biol Biochem 98:64–73
|
47 |
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H
|
48 |
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
|
49 |
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731
|
50 |
Kang DD, Froula J, Egan R,Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165
|
51 |
Klindworth A, Pruesse E,Schweer T,Peplies J,Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Res 41:e1–e1
|
52 |
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C,Debelius J,Gonzalez A, Kosciolek T,McCall L-I,McDonald D
|
53 |
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761
|
54 |
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226
|
55 |
Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain J-M, Fournier P-E, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550
|
56 |
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R
|
57 |
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
|
58 |
Letunic I,Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259
|
59 |
Levy A, Salas Gonzalez I,Mittelviefhaus M, Clingenpeel S,Herrera Paredes S, Miao J,Wang K, Devescovi G,Stillman K, Monteiro F
|
60 |
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676
|
61 |
Li J,Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T
|
62 |
Liu C, Zhou N, Du M-X,Sun Y-T, Wang K, Wang Y-J, Li D-H, Yu H-Y,Song Y, Bai B-B
|
63 |
Liu Y-X, Qin Y, Bai Y (2019) Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol 49:97–102
|
64 |
Liu Y-X, Qin Y, Guo X, Bai Y(2019) Methods and applications for microbiome data analysis. Hereditas (Beijing) 41:1–18
|
65 |
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277
|
66 |
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G (2019) Man-made microbial resistances in built environments. Nat Commun 10:968
|
67 |
Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31
|
68 |
McDonald D, Price MN, Goodrich J,Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610
|
69 |
Members BDC (2019) Database resources of the BIG data center in 2019. Nucleic Acids Res 47:D8–D14
|
70 |
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N
|
71 |
Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi A, Wohl S, Carter A
|
72 |
Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090
|
73 |
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ
|
74 |
Moss EL, Maghini DG, and Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol
|
75 |
Mu D-S, Liang Q-Y, Wang X-M,Lu D-C, Shi M-J,Chen G-J, Du Z-J (2018) Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6:230
|
76 |
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274
|
77 |
Ning K, Tong Y (2019) The fast track for microbiome research. Genom Proteom Bioinf 17:1–3
|
78 |
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834
|
79 |
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Commun Ecol Pack 10:631–637
|
80 |
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124
|
81 |
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P
|
82 |
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–149
|
83 |
Pedersen HK, Forslund SK, Gudmundsdottir V, Petersen AØ, Hildebrand F, Hyötyläinen T, Nielsen T, Hansen T, Bork P,Ehrlich SD
|
84 |
Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J,Mahurkar A, Zhou W, Buck GA, Snyder MP, Strauss JF, Weinstock GM
|
85 |
Qian X, Liu Y-X, Ye X, Zheng W, Lv S, Mo M, Lin J, Wang W, Wang W, Zhang X
|
86 |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,Pons N, Levenez F, Yamada T
|
87 |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596
|
88 |
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833
|
89 |
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R
|
90 |
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
|
91 |
Rognes T,Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584
|
92 |
Ross AA, Müller KM, Weese JS, Neufeld JD (2018) Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class mammalia. Proc Natl Acad Sci USA 115:E5786–E5795
|
93 |
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N
|
94 |
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A
|
95 |
Saito R, Smoot ME, Ono K, Ruscheinski J,Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076
|
96 |
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S
|
97 |
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069
|
98 |
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60
|
99 |
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I,Pe’er I, and Halperin E (2019) FEAST: fast expectation-maximization for microbial source tracking. Nat Methods
|
100 |
Shi W, Li M, Wei G, Tian R, Li C, Wang B, Lin R, Shi C, Chi X, Zhou B
|
101 |
Shi W, Qi H, Sun Q, Fan G,Liu S, Wang J, Zhu B, Liu H, Zhao F,Wang X
|
102 |
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843
|
103 |
Sinha R,Abu-Ali G, Vogtmann E,Fodor AA, Ren B, Amir A, Schwager E, Crabtree J,Ma S, Abnet CC
|
104 |
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE
|
105 |
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M (2019) Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 37:953–961
|
106 |
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW
|
107 |
Subramanian S, Huq S, Yatsunenko T,Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD
|
108 |
Tange O(2018). Gnu parallel 2018 (Lulu. com).
|
109 |
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C,Mehlenbacher E, Patel CJ, Kostic AD (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283–295.e288
|
110 |
Tkacz A, Hortala M,Poole PS (2018) Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6:110
|
111 |
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903
|
112 |
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810
|
113 |
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258
|
114 |
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158
|
115 |
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y,
|
116 |
Vangay P,Hillmann BM, Knights D (2019) Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience 8:giz042
|
117 |
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B (2018) Of genes and microbes: solving the intricacies in host genomes. Protein Cell 9:446–461
|
118 |
Wang J, Jia Z, Zhang B, Peng L, and Zhao F (2019) Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut, gutjnl-2019–318977
|
119 |
Wang J, Thingholm LB, Skiecevičienė J, Rausch P,Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak S
|
120 |
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y
|
121 |
Wang W, Yang J, Zhang J, Liu Y-X, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W
|
122 |
Wang X,Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, and Wang E (2020b) An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull
|
123 |
Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q
|
124 |
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R
|
125 |
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L
|
126 |
Wood DE, Lu J, and Langmead B (2019) Improved metagenomic analysis with Kraken 2. bioRxiv 762302
|
127 |
Wu Y-W, Simmons BA, Singer SW (2015) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607
|
128 |
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J,Zhang D
|
129 |
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD
|
130 |
Xu Y, Zhao F (2018) Single-cell metagenomics: challenges and applications. Protein Cell 9:501–510
|
131 |
Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9:474–487
|
132 |
Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794
|
133 |
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G
|
134 |
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113: E7996–E8005
|
135 |
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Feng B, Chen D, Ren J, Deng M
|
136 |
Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X
|
137 |
Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J
|
138 |
Zheng M, Zhou N, Liu S, Dang C, Liu Y-X,He S, Zhao Y, Liu W, Wang X (2019) N2O and NO emission from a biological aerated filter treating coking wastewater: main source and microbial community. J Clean Prod 213:365–374
|
139 |
Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132–e132
|
140 |
Zou Y, Xue W, Luo G,Deng Z,Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y
|
/
〈 | 〉 |