REVIEW

A practical guide to amplicon and metagenomic analysis of microbiome data

  • Yong-Xin Liu , 1,2,3 ,
  • Yuan Qin 1,2,3,4 ,
  • Tong Chen 5 ,
  • Meiping Lu 6 ,
  • Xubo Qian 6 ,
  • Xiaoxuan Guo 1,2,3 ,
  • Yang Bai , 1,2,3,4
Expand
  • 1. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • 2. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • 4. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5. National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
  • 6. Department of Rheumatology Immunology & Allergy, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310053, China

Received date: 04 Feb 2020

Accepted date: 10 Apr 2020

Published date: 15 May 2021

Copyright

2020 The Author(s)

Abstract

Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and betadiversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a stepby-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.

Cite this article

Yong-Xin Liu , Yuan Qin , Tong Chen , Meiping Lu , Xubo Qian , Xiaoxuan Guo , Yang Bai . A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein & Cell, 2021 , 12(5) : 315 -330 . DOI: 10.1007/s13238-020-00724-8

1
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146

DOI

2
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J,Bruls T, Batto JM (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

DOI

3
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029

DOI

4
Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

DOI

5
Bai Y,Müller DB, Srinivas G,Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S,Remus-Emsermann M (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

DOI

6
Bastian M, Heymann S, and Jacomy M (2009). Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media.

7
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

DOI

8
Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh JY, Tong C (2019) Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 37:937–944

DOI

9
Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A,Dekas AE, Batzoglou S, Bhatt AS (2018) High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 36:1067–1075

DOI

10
Blin K, Weber T, Lee SY, Medema MH, Pascal Andreu V, de los Santos ELC, Del Carratore F (2018) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47:D625–D630

DOI

11
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

DOI

12
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

DOI

13
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J,Rivers AR, Eloe-Fadrosh EA (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731

DOI

14
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

DOI

15
Caporaso JG, Kuczynski J, Stombaugh J,Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

DOI

16
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242

DOI

17
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WFJ, Gomez- Exposito R, Elsayed SS (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612

DOI

18
Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37:783–792

DOI

19
Chen Q, Jiang T, Liu Y-X, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J (2019) Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci 62:947–958

DOI

20
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F,Tramontano M, Driessen M, Hercog R, Jung F-E (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35:1069–1076

DOI

21
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9

22
de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS (2019) Human placenta has no microbiome but can contain potential pathogens. Nature 572:329–334

DOI

23
de Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AYM (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5:68

DOI

24
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

DOI

25
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

DOI

26
Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

DOI

27
Edwards J,Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920

DOI

28
Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16:e2003862

DOI

29
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y-g, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143

DOI

30
Field D,Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T,Thomson N, Allen MJ, Angiuoli SV (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547

DOI

31
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G,Lipson KS, Knight R, Caporaso JG, Segata N (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962–968

DOI

32
Fresia P, Antelo V, Salazar C, Giménez M,D’Alessandro B, Afshinnekoo E,Mason C,Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35

DOI

33
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

DOI

34
Galkin F, Aliper A, Putin E, Kuznetsov I,Gladyshev VN, Zhavoronkov A (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv 507780

DOI

35
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500

DOI

36
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB (2018) Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15:796–798

DOI

37
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257

DOI

38
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J, The Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476

DOI

39
Guo X, Zhang X, Qin Y, Liu Y-X, Zhang J, Zhang N, Wu K, Qu B, He Z, Wang X (2020) Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun 1:100003

DOI

40
Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y,Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389

DOI

41
Huang P,Zhang Y, Xiao K, Jiang F, Wang H, Tang D, Liu D, Liu B, Liu Y, He X (2018) The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 6:211

DOI

42
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957

DOI

43
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230

DOI

44
Ji P, Zhang Y, Wang J,Zhao F (2017) MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 8:14306

DOI

45
Jiang X,Li X, Yang L, Liu C, Wang Q, Chi W, Zhu H (2019) How microbes shape their communities? A microbial community model based on functional genes. Genom Proteom Bioinf 17:91–105

DOI

46
Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils: biogeography and cooccurrence patterns. Soil Biol Biochem 98:64–73

DOI

47
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Giga Sci 6:1–12

DOI

48
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

DOI

49
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731

DOI

50
Kang DD, Froula J, Egan R,Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165

DOI

51
Klindworth A, Pruesse E,Schweer T,Peplies J,Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Res 41:e1–e1

DOI

52
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C,Debelius J,Gonzalez A, Kosciolek T,McCall L-I,McDonald D (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16:410–422

DOI

53
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761

DOI

54
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226

DOI

55
Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain J-M, Fournier P-E, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550

DOI

56
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814

DOI

57
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

DOI

58
Letunic I,Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259

DOI

59
Levy A, Salas Gonzalez I,Mittelviefhaus M, Clingenpeel S,Herrera Paredes S, Miao J,Wang K, Devescovi G,Stillman K, Monteiro F (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50:138–150

DOI

60
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

DOI

61
Li J,Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841

DOI

62
Liu C, Zhou N, Du M-X,Sun Y-T, Wang K, Wang Y-J, Li D-H, Yu H-Y,Song Y, Bai B-B (2020) The mouse gut microbial Biobank expands the coverage of cultured bacteria. Nat Commun 11:79

DOI

63
Liu Y-X, Qin Y, Bai Y (2019) Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol 49:97–102

DOI

64
Liu Y-X, Qin Y, Guo X, Bai Y(2019) Methods and applications for microbiome data analysis. Hereditas (Beijing) 41:1–18

65
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

DOI

66
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G (2019) Man-made microbial resistances in built environments. Nat Commun 10:968

DOI

67
Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31

DOI

68
McDonald D, Price MN, Goodrich J,Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610

DOI

69
Members BDC (2019) Database resources of the BIG data center in 2019. Nucleic Acids Res 47:D8–D14

70
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N (2016) Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351:158–162

DOI

71
Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi A, Wohl S, Carter A (2019) Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat Biotechnol 37:160–168

DOI

72
Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090

DOI

73
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48:D570–D578

DOI

74
Moss EL, Maghini DG, and Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol

DOI

75
Mu D-S, Liang Q-Y, Wang X-M,Lu D-C, Shi M-J,Chen G-J, Du Z-J (2018) Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6:230

DOI

76
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

DOI

77
Ning K, Tong Y (2019) The fast track for microbiome research. Genom Proteom Bioinf 17:1–3

DOI

78
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834

DOI

79
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Commun Ecol Pack 10:631–637

80
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

DOI

81
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:649–662.e620

DOI

82
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–149

DOI

83
Pedersen HK, Forslund SK, Gudmundsdottir V, Petersen AØ, Hildebrand F, Hyötyläinen T, Nielsen T, Hansen T, Bork P,Ehrlich SD (2018) A computational framework to integrate highthroughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat Protoc 13:2781–2800

DOI

84
Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J,Mahurkar A, Zhou W, Buck GA, Snyder MP, Strauss JF, Weinstock GM (2019) The integrative human microbiome project. Nature 569:641–648

DOI

85
Qian X, Liu Y-X, Ye X, Zheng W, Lv S, Mo M, Lin J, Wang W, Wang W, Zhang X (2020) Gut microbiota in children with juvenile idiopathic arthritis: characteristics, biomarker identification, and usefulness in clinical prediction. BMC Genom 21:286

DOI

86
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

DOI

87
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596

DOI

88
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833

DOI

89
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R (2019) Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68:1014–1023

DOI

90
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

DOI

91
Rognes T,Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

DOI

92
Ross AA, Müller KM, Weese JS, Neufeld JD (2018) Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class mammalia. Proc Natl Acad Sci USA 115:E5786–E5795

DOI

93
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210

DOI

94
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A (2019) Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol 37:29–37

DOI

95
Saito R, Smoot ME, Ono K, Ruscheinski J,Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076

DOI

96
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S (2019) Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179:1068–1083.e1021

DOI

97
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

DOI

98
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

DOI

99
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I,Pe’er I, and Halperin E (2019) FEAST: fast expectation-maximization for microbial source tracking. Nat Methods

DOI

100
Shi W, Li M, Wei G, Tian R, Li C, Wang B, Lin R, Shi C, Chi X, Zhou B (2019) The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 7:14

DOI

101
Shi W, Qi H, Sun Q, Fan G,Liu S, Wang J, Zhu B, Liu H, Zhao F,Wang X (2019) gcMeta: a global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res 47:D637–D648

DOI

102
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843

DOI

103
Sinha R,Abu-Ali G, Vogtmann E,Fodor AA, Ren B, Amir A, Schwager E, Crabtree J,Ma S, Abnet CC (2017) Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (MBQC) project consortium. Nat Biotechnol 35:1077–1086

DOI

104
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE (2017) Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802–806

DOI

105
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M (2019) Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 37:953–961

DOI

106
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW (2018) Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 9:870

DOI

107
Subramanian S, Huq S, Yatsunenko T,Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417

DOI

108
Tange O(2018). Gnu parallel 2018 (Lulu. com).

109
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C,Mehlenbacher E, Patel CJ, Kostic AD (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283–295.e288

DOI

110
Tkacz A, Hortala M,Poole PS (2018) Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6:110

DOI

111
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903

DOI

112
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

DOI

113
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

DOI

114
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158

DOI

115
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507–511

DOI

116
Vangay P,Hillmann BM, Knights D (2019) Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience 8:giz042

DOI

117
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B (2018) Of genes and microbes: solving the intricacies in host genomes. Protein Cell 9:446–461

DOI

118
Wang J, Jia Z, Zhang B, Peng L, and Zhao F (2019) Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut, gutjnl-2019–318977

DOI

119
Wang J, Thingholm LB, Skiecevičienė J, Rausch P,Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak S (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406

DOI

120
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y (2018) Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67:1614–1625

DOI

121
Wang W, Yang J, Zhang J, Liu Y-X, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W (2020) An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27:601–613.e607

DOI

122
Wang X,Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, and Wang E (2020b) An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull

DOI

123
Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q(2017) GSA: genome sequence archive*. Genom Proteom Bioinf 15:14–18

DOI

124
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R (2017) BugBase predicts organism-level microbiome phenotypes. bioRxiv 133462

DOI

125
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589

DOI

126
Wood DE, Lu J, and Langmead B (2019) Improved metagenomic analysis with Kraken 2. bioRxiv 762302

DOI

127
Wu Y-W, Simmons BA, Singer SW (2015) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607

DOI

128
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J,Zhang D (2015) A catalog of the mouse gut metagenome. Nat Biotechnol 33:1103

DOI

129
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894

DOI

130
Xu Y, Zhao F (2018) Single-cell metagenomics: challenges and applications. Protein Cell 9:501–510

DOI

131
Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9:474–487

DOI

132
Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794

DOI

133
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G (2011) Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29:415–420

DOI

134
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113: E7996–E8005

DOI

135
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Feng B, Chen D, Ren J, Deng M (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462–473

DOI

136
Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684

DOI

137
Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J (2018) Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61:613–621

DOI

138
Zheng M, Zhou N, Liu S, Dang C, Liu Y-X,He S, Zhao Y, Liu W, Wang X (2019) N2O and NO emission from a biological aerated filter treating coking wastewater: main source and microbial community. J Clean Prod 213:365–374

DOI

139
Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132–e132

DOI

140
Zou Y, Xue W, Luo G,Deng Z,Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185

DOI

Outlines

/