A practical guide to amplicon and metagenomic analysis of microbiome data
Yong-Xin Liu, Yuan Qin, Tong Chen, Meiping Lu, Xubo Qian, Xiaoxuan Guo, Yang Bai
A practical guide to amplicon and metagenomic analysis of microbiome data
Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and betadiversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a stepby-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.
metagenome / marker genes / highthroughput sequencing / pipeline / reproducible analysis / visualization
[1] |
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146
CrossRef
Google scholar
|
[2] |
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J,Bruls T, Batto JM
CrossRef
Google scholar
|
[3] |
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029
CrossRef
Google scholar
|
[4] |
Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884
CrossRef
Google scholar
|
[5] |
Bai Y,Müller DB, Srinivas G,Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S,Remus-Emsermann M
CrossRef
Google scholar
|
[6] |
Bastian M, Heymann S, and Jacomy M (2009). Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media.
|
[7] |
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25
CrossRef
Google scholar
|
[8] |
Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh JY, Tong C
CrossRef
Google scholar
|
[9] |
Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A,Dekas AE, Batzoglou S, Bhatt AS (2018) High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 36:1067–1075
CrossRef
Google scholar
|
[10] |
Blin K, Weber T, Lee SY, Medema MH, Pascal Andreu V, de los Santos ELC, Del Carratore F (2018) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47:D625–D630
CrossRef
Google scholar
|
[11] |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
CrossRef
Google scholar
|
[12] |
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F
CrossRef
Google scholar
|
[13] |
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J,Rivers AR, Eloe-Fadrosh EA
CrossRef
Google scholar
|
[14] |
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
CrossRef
Google scholar
|
[15] |
Caporaso JG, Kuczynski J, Stombaugh J,Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI
CrossRef
Google scholar
|
[16] |
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242
CrossRef
Google scholar
|
[17] |
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WFJ, Gomez- Exposito R, Elsayed SS
CrossRef
Google scholar
|
[18] |
Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J
CrossRef
Google scholar
|
[19] |
Chen Q, Jiang T, Liu Y-X, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J
CrossRef
Google scholar
|
[20] |
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F,Tramontano M, Driessen M, Hercog R, Jung F-E
CrossRef
Google scholar
|
[21] |
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9
|
[22] |
de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS (2019) Human placenta has no microbiome but can contain potential pathogens. Nature 572:329–334
CrossRef
Google scholar
|
[23] |
de Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AYM (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5:68
CrossRef
Google scholar
|
[24] |
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
CrossRef
Google scholar
|
[25] |
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998
CrossRef
Google scholar
|
[26] |
Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482
CrossRef
Google scholar
|
[27] |
Edwards J,Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920
CrossRef
Google scholar
|
[28] |
Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16:e2003862
CrossRef
Google scholar
|
[29] |
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y-g, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143
CrossRef
Google scholar
|
[30] |
Field D,Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T,Thomson N, Allen MJ, Angiuoli SV
CrossRef
Google scholar
|
[31] |
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G,Lipson KS, Knight R, Caporaso JG, Segata N
CrossRef
Google scholar
|
[32] |
Fresia P, Antelo V, Salazar C, Giménez M,D’Alessandro B, Afshinnekoo E,Mason C,Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35
CrossRef
Google scholar
|
[33] |
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152
CrossRef
Google scholar
|
[34] |
Galkin F, Aliper A, Putin E, Kuznetsov I,Gladyshev VN, Zhavoronkov A (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv 507780
CrossRef
Google scholar
|
[35] |
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500
CrossRef
Google scholar
|
[36] |
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB
CrossRef
Google scholar
|
[37] |
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257
CrossRef
Google scholar
|
[38] |
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J, The Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476
CrossRef
Google scholar
|
[39] |
Guo X, Zhang X, Qin Y, Liu Y-X, Zhang J, Zhang N, Wu K, Qu B, He Z, Wang X
CrossRef
Google scholar
|
[40] |
Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y,Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389
CrossRef
Google scholar
|
[41] |
Huang P,Zhang Y, Xiao K, Jiang F, Wang H, Tang D, Liu D, Liu B, Liu Y, He X
CrossRef
Google scholar
|
[42] |
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957
CrossRef
Google scholar
|
[43] |
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230
CrossRef
Google scholar
|
[44] |
Ji P, Zhang Y, Wang J,Zhao F (2017) MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 8:14306
CrossRef
Google scholar
|
[45] |
Jiang X,Li X, Yang L, Liu C, Wang Q, Chi W, Zhu H (2019) How microbes shape their communities? A microbial community model based on functional genes. Genom Proteom Bioinf 17:91–105
CrossRef
Google scholar
|
[46] |
Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils: biogeography and cooccurrence patterns. Soil Biol Biochem 98:64–73
CrossRef
Google scholar
|
[47] |
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H
CrossRef
Google scholar
|
[48] |
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
CrossRef
Google scholar
|
[49] |
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731
CrossRef
Google scholar
|
[50] |
Kang DD, Froula J, Egan R,Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165
CrossRef
Google scholar
|
[51] |
Klindworth A, Pruesse E,Schweer T,Peplies J,Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Res 41:e1–e1
CrossRef
Google scholar
|
[52] |
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C,Debelius J,Gonzalez A, Kosciolek T,McCall L-I,McDonald D
CrossRef
Google scholar
|
[53] |
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761
CrossRef
Google scholar
|
[54] |
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226
CrossRef
Google scholar
|
[55] |
Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain J-M, Fournier P-E, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550
CrossRef
Google scholar
|
[56] |
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R
CrossRef
Google scholar
|
[57] |
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
CrossRef
Google scholar
|
[58] |
Letunic I,Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259
CrossRef
Google scholar
|
[59] |
Levy A, Salas Gonzalez I,Mittelviefhaus M, Clingenpeel S,Herrera Paredes S, Miao J,Wang K, Devescovi G,Stillman K, Monteiro F
CrossRef
Google scholar
|
[60] |
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676
CrossRef
Google scholar
|
[61] |
Li J,Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T
CrossRef
Google scholar
|
[62] |
Liu C, Zhou N, Du M-X,Sun Y-T, Wang K, Wang Y-J, Li D-H, Yu H-Y,Song Y, Bai B-B
CrossRef
Google scholar
|
[63] |
Liu Y-X, Qin Y, Bai Y (2019) Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol 49:97–102
CrossRef
Google scholar
|
[64] |
Liu Y-X, Qin Y, Guo X, Bai Y(2019) Methods and applications for microbiome data analysis. Hereditas (Beijing) 41:1–18
|
[65] |
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277
CrossRef
Google scholar
|
[66] |
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G (2019) Man-made microbial resistances in built environments. Nat Commun 10:968
CrossRef
Google scholar
|
[67] |
Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31
CrossRef
Google scholar
|
[68] |
McDonald D, Price MN, Goodrich J,Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610
CrossRef
Google scholar
|
[69] |
Members BDC (2019) Database resources of the BIG data center in 2019. Nucleic Acids Res 47:D8–D14
|
[70] |
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N
CrossRef
Google scholar
|
[71] |
Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi A, Wohl S, Carter A
CrossRef
Google scholar
|
[72] |
Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090
CrossRef
Google scholar
|
[73] |
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ
CrossRef
Google scholar
|
[74] |
Moss EL, Maghini DG, and Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol
CrossRef
Google scholar
|
[75] |
Mu D-S, Liang Q-Y, Wang X-M,Lu D-C, Shi M-J,Chen G-J, Du Z-J (2018) Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6:230
CrossRef
Google scholar
|
[76] |
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274
CrossRef
Google scholar
|
[77] |
Ning K, Tong Y (2019) The fast track for microbiome research. Genom Proteom Bioinf 17:1–3
CrossRef
Google scholar
|
[78] |
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834
CrossRef
Google scholar
|
[79] |
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Commun Ecol Pack 10:631–637
|
[80] |
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124
CrossRef
Google scholar
|
[81] |
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P
CrossRef
Google scholar
|
[82] |
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–149
CrossRef
Google scholar
|
[83] |
Pedersen HK, Forslund SK, Gudmundsdottir V, Petersen AØ, Hildebrand F, Hyötyläinen T, Nielsen T, Hansen T, Bork P,Ehrlich SD
CrossRef
Google scholar
|
[84] |
Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J,Mahurkar A, Zhou W, Buck GA, Snyder MP, Strauss JF, Weinstock GM
CrossRef
Google scholar
|
[85] |
Qian X, Liu Y-X, Ye X, Zheng W, Lv S, Mo M, Lin J, Wang W, Wang W, Zhang X
CrossRef
Google scholar
|
[86] |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,Pons N, Levenez F, Yamada T
CrossRef
Google scholar
|
[87] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596
CrossRef
Google scholar
|
[88] |
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833
CrossRef
Google scholar
|
[89] |
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R
CrossRef
Google scholar
|
[90] |
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
CrossRef
Google scholar
|
[91] |
Rognes T,Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584
CrossRef
Google scholar
|
[92] |
Ross AA, Müller KM, Weese JS, Neufeld JD (2018) Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class mammalia. Proc Natl Acad Sci USA 115:E5786–E5795
CrossRef
Google scholar
|
[93] |
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N
CrossRef
Google scholar
|
[94] |
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A
CrossRef
Google scholar
|
[95] |
Saito R, Smoot ME, Ono K, Ruscheinski J,Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076
CrossRef
Google scholar
|
[96] |
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S
CrossRef
Google scholar
|
[97] |
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069
CrossRef
Google scholar
|
[98] |
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60
CrossRef
Google scholar
|
[99] |
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I,Pe’er I, and Halperin E (2019) FEAST: fast expectation-maximization for microbial source tracking. Nat Methods
CrossRef
Google scholar
|
[100] |
Shi W, Li M, Wei G, Tian R, Li C, Wang B, Lin R, Shi C, Chi X, Zhou B
CrossRef
Google scholar
|
[101] |
Shi W, Qi H, Sun Q, Fan G,Liu S, Wang J, Zhu B, Liu H, Zhao F,Wang X
CrossRef
Google scholar
|
[102] |
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843
CrossRef
Google scholar
|
[103] |
Sinha R,Abu-Ali G, Vogtmann E,Fodor AA, Ren B, Amir A, Schwager E, Crabtree J,Ma S, Abnet CC
CrossRef
Google scholar
|
[104] |
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE
CrossRef
Google scholar
|
[105] |
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M (2019) Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 37:953–961
CrossRef
Google scholar
|
[106] |
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW
CrossRef
Google scholar
|
[107] |
Subramanian S, Huq S, Yatsunenko T,Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD
CrossRef
Google scholar
|
[108] |
Tange O(2018). Gnu parallel 2018 (Lulu. com).
|
[109] |
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C,Mehlenbacher E, Patel CJ, Kostic AD (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283–295.e288
CrossRef
Google scholar
|
[110] |
Tkacz A, Hortala M,Poole PS (2018) Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6:110
CrossRef
Google scholar
|
[111] |
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903
CrossRef
Google scholar
|
[112] |
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810
CrossRef
Google scholar
|
[113] |
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258
CrossRef
Google scholar
|
[114] |
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158
CrossRef
Google scholar
|
[115] |
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y,
CrossRef
Google scholar
|
[116] |
Vangay P,Hillmann BM, Knights D (2019) Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience 8:giz042
CrossRef
Google scholar
|
[117] |
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B (2018) Of genes and microbes: solving the intricacies in host genomes. Protein Cell 9:446–461
CrossRef
Google scholar
|
[118] |
Wang J, Jia Z, Zhang B, Peng L, and Zhao F (2019) Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut, gutjnl-2019–318977
CrossRef
Google scholar
|
[119] |
Wang J, Thingholm LB, Skiecevičienė J, Rausch P,Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak S
CrossRef
Google scholar
|
[120] |
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y
CrossRef
Google scholar
|
[121] |
Wang W, Yang J, Zhang J, Liu Y-X, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W
CrossRef
Google scholar
|
[122] |
Wang X,Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, and Wang E (2020b) An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull
CrossRef
Google scholar
|
[123] |
Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q
CrossRef
Google scholar
|
[124] |
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R
CrossRef
Google scholar
|
[125] |
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L
CrossRef
Google scholar
|
[126] |
Wood DE, Lu J, and Langmead B (2019) Improved metagenomic analysis with Kraken 2. bioRxiv 762302
CrossRef
Google scholar
|
[127] |
Wu Y-W, Simmons BA, Singer SW (2015) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607
CrossRef
Google scholar
|
[128] |
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J,Zhang D
CrossRef
Google scholar
|
[129] |
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD
CrossRef
Google scholar
|
[130] |
Xu Y, Zhao F (2018) Single-cell metagenomics: challenges and applications. Protein Cell 9:501–510
CrossRef
Google scholar
|
[131] |
Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9:474–487
CrossRef
Google scholar
|
[132] |
Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794
CrossRef
Google scholar
|
[133] |
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G
CrossRef
Google scholar
|
[134] |
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113: E7996–E8005
CrossRef
Google scholar
|
[135] |
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Feng B, Chen D, Ren J, Deng M
CrossRef
Google scholar
|
[136] |
Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X
CrossRef
Google scholar
|
[137] |
Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J
CrossRef
Google scholar
|
[138] |
Zheng M, Zhou N, Liu S, Dang C, Liu Y-X,He S, Zhao Y, Liu W, Wang X (2019) N2O and NO emission from a biological aerated filter treating coking wastewater: main source and microbial community. J Clean Prod 213:365–374
CrossRef
Google scholar
|
[139] |
Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132–e132
CrossRef
Google scholar
|
[140] |
Zou Y, Xue W, Luo G,Deng Z,Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y
CrossRef
Google scholar
|
/
〈 | 〉 |