A practical guide to amplicon and metagenomic analysis of microbiome data

Yong-Xin Liu, Yuan Qin, Tong Chen, Meiping Lu, Xubo Qian, Xiaoxuan Guo, Yang Bai

PDF(823 KB)
PDF(823 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (5) : 315-330. DOI: 10.1007/s13238-020-00724-8
REVIEW
REVIEW

A practical guide to amplicon and metagenomic analysis of microbiome data

Author information +
History +

Abstract

Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and betadiversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a stepby-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.

Keywords

metagenome / marker genes / highthroughput sequencing / pipeline / reproducible analysis / visualization

Cite this article

Download citation ▾
Yong-Xin Liu, Yuan Qin, Tong Chen, Meiping Lu, Xubo Qian, Xiaoxuan Guo, Yang Bai. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 2021, 12(5): 315‒330 https://doi.org/10.1007/s13238-020-00724-8

References

[1]
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146
CrossRef Google scholar
[2]
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J,Bruls T, Batto JM (2011) Enterotypes of the human gut microbiome. Nature 473:174–180
CrossRef Google scholar
[3]
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029
CrossRef Google scholar
[4]
Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884
CrossRef Google scholar
[5]
Bai Y,Müller DB, Srinivas G,Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S,Remus-Emsermann M (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369
CrossRef Google scholar
[6]
Bastian M, Heymann S, and Jacomy M (2009). Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media.
[7]
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25
CrossRef Google scholar
[8]
Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh JY, Tong C (2019) Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 37:937–944
CrossRef Google scholar
[9]
Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A,Dekas AE, Batzoglou S, Bhatt AS (2018) High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 36:1067–1075
CrossRef Google scholar
[10]
Blin K, Weber T, Lee SY, Medema MH, Pascal Andreu V, de los Santos ELC, Del Carratore F (2018) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47:D625–D630
CrossRef Google scholar
[11]
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
CrossRef Google scholar
[12]
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857
CrossRef Google scholar
[13]
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J,Rivers AR, Eloe-Fadrosh EA (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731
CrossRef Google scholar
[14]
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
CrossRef Google scholar
[15]
Caporaso JG, Kuczynski J, Stombaugh J,Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336
CrossRef Google scholar
[16]
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242
CrossRef Google scholar
[17]
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WFJ, Gomez- Exposito R, Elsayed SS (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612
CrossRef Google scholar
[18]
Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37:783–792
CrossRef Google scholar
[19]
Chen Q, Jiang T, Liu Y-X, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J (2019) Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci 62:947–958
CrossRef Google scholar
[20]
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F,Tramontano M, Driessen M, Hercog R, Jung F-E (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35:1069–1076
CrossRef Google scholar
[21]
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9
[22]
de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS (2019) Human placenta has no microbiome but can contain potential pathogens. Nature 572:329–334
CrossRef Google scholar
[23]
de Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AYM (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5:68
CrossRef Google scholar
[24]
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
CrossRef Google scholar
[25]
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998
CrossRef Google scholar
[26]
Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482
CrossRef Google scholar
[27]
Edwards J,Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920
CrossRef Google scholar
[28]
Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16:e2003862
CrossRef Google scholar
[29]
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y-g, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143
CrossRef Google scholar
[30]
Field D,Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T,Thomson N, Allen MJ, Angiuoli SV (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547
CrossRef Google scholar
[31]
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G,Lipson KS, Knight R, Caporaso JG, Segata N (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962–968
CrossRef Google scholar
[32]
Fresia P, Antelo V, Salazar C, Giménez M,D’Alessandro B, Afshinnekoo E,Mason C,Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35
CrossRef Google scholar
[33]
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152
CrossRef Google scholar
[34]
Galkin F, Aliper A, Putin E, Kuznetsov I,Gladyshev VN, Zhavoronkov A (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv 507780
CrossRef Google scholar
[35]
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500
CrossRef Google scholar
[36]
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB (2018) Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15:796–798
CrossRef Google scholar
[37]
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257
CrossRef Google scholar
[38]
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J, The Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476
CrossRef Google scholar
[39]
Guo X, Zhang X, Qin Y, Liu Y-X, Zhang J, Zhang N, Wu K, Qu B, He Z, Wang X (2020) Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun 1:100003
CrossRef Google scholar
[40]
Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y,Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389
CrossRef Google scholar
[41]
Huang P,Zhang Y, Xiao K, Jiang F, Wang H, Tang D, Liu D, Liu B, Liu Y, He X (2018) The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 6:211
CrossRef Google scholar
[42]
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957
CrossRef Google scholar
[43]
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230
CrossRef Google scholar
[44]
Ji P, Zhang Y, Wang J,Zhao F (2017) MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 8:14306
CrossRef Google scholar
[45]
Jiang X,Li X, Yang L, Liu C, Wang Q, Chi W, Zhu H (2019) How microbes shape their communities? A microbial community model based on functional genes. Genom Proteom Bioinf 17:91–105
CrossRef Google scholar
[46]
Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils: biogeography and cooccurrence patterns. Soil Biol Biochem 98:64–73
CrossRef Google scholar
[47]
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Giga Sci 6:1–12
CrossRef Google scholar
[48]
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
CrossRef Google scholar
[49]
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731
CrossRef Google scholar
[50]
Kang DD, Froula J, Egan R,Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165
CrossRef Google scholar
[51]
Klindworth A, Pruesse E,Schweer T,Peplies J,Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Res 41:e1–e1
CrossRef Google scholar
[52]
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C,Debelius J,Gonzalez A, Kosciolek T,McCall L-I,McDonald D (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16:410–422
CrossRef Google scholar
[53]
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761
CrossRef Google scholar
[54]
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226
CrossRef Google scholar
[55]
Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain J-M, Fournier P-E, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550
CrossRef Google scholar
[56]
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814
CrossRef Google scholar
[57]
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
CrossRef Google scholar
[58]
Letunic I,Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259
CrossRef Google scholar
[59]
Levy A, Salas Gonzalez I,Mittelviefhaus M, Clingenpeel S,Herrera Paredes S, Miao J,Wang K, Devescovi G,Stillman K, Monteiro F (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50:138–150
CrossRef Google scholar
[60]
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676
CrossRef Google scholar
[61]
Li J,Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841
CrossRef Google scholar
[62]
Liu C, Zhou N, Du M-X,Sun Y-T, Wang K, Wang Y-J, Li D-H, Yu H-Y,Song Y, Bai B-B (2020) The mouse gut microbial Biobank expands the coverage of cultured bacteria. Nat Commun 11:79
CrossRef Google scholar
[63]
Liu Y-X, Qin Y, Bai Y (2019) Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol 49:97–102
CrossRef Google scholar
[64]
Liu Y-X, Qin Y, Guo X, Bai Y(2019) Methods and applications for microbiome data analysis. Hereditas (Beijing) 41:1–18
[65]
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277
CrossRef Google scholar
[66]
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G (2019) Man-made microbial resistances in built environments. Nat Commun 10:968
CrossRef Google scholar
[67]
Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31
CrossRef Google scholar
[68]
McDonald D, Price MN, Goodrich J,Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610
CrossRef Google scholar
[69]
Members BDC (2019) Database resources of the BIG data center in 2019. Nucleic Acids Res 47:D8–D14
[70]
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N (2016) Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351:158–162
CrossRef Google scholar
[71]
Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi A, Wohl S, Carter A (2019) Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat Biotechnol 37:160–168
CrossRef Google scholar
[72]
Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090
CrossRef Google scholar
[73]
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48:D570–D578
CrossRef Google scholar
[74]
Moss EL, Maghini DG, and Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol
CrossRef Google scholar
[75]
Mu D-S, Liang Q-Y, Wang X-M,Lu D-C, Shi M-J,Chen G-J, Du Z-J (2018) Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6:230
CrossRef Google scholar
[76]
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274
CrossRef Google scholar
[77]
Ning K, Tong Y (2019) The fast track for microbiome research. Genom Proteom Bioinf 17:1–3
CrossRef Google scholar
[78]
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834
CrossRef Google scholar
[79]
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Commun Ecol Pack 10:631–637
[80]
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124
CrossRef Google scholar
[81]
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:649–662.e620
CrossRef Google scholar
[82]
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–149
CrossRef Google scholar
[83]
Pedersen HK, Forslund SK, Gudmundsdottir V, Petersen AØ, Hildebrand F, Hyötyläinen T, Nielsen T, Hansen T, Bork P,Ehrlich SD (2018) A computational framework to integrate highthroughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat Protoc 13:2781–2800
CrossRef Google scholar
[84]
Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J,Mahurkar A, Zhou W, Buck GA, Snyder MP, Strauss JF, Weinstock GM (2019) The integrative human microbiome project. Nature 569:641–648
CrossRef Google scholar
[85]
Qian X, Liu Y-X, Ye X, Zheng W, Lv S, Mo M, Lin J, Wang W, Wang W, Zhang X (2020) Gut microbiota in children with juvenile idiopathic arthritis: characteristics, biomarker identification, and usefulness in clinical prediction. BMC Genom 21:286
CrossRef Google scholar
[86]
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
CrossRef Google scholar
[87]
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596
CrossRef Google scholar
[88]
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833
CrossRef Google scholar
[89]
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R (2019) Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68:1014–1023
CrossRef Google scholar
[90]
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
CrossRef Google scholar
[91]
Rognes T,Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584
CrossRef Google scholar
[92]
Ross AA, Müller KM, Weese JS, Neufeld JD (2018) Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class mammalia. Proc Natl Acad Sci USA 115:E5786–E5795
CrossRef Google scholar
[93]
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210
CrossRef Google scholar
[94]
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A (2019) Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol 37:29–37
CrossRef Google scholar
[95]
Saito R, Smoot ME, Ono K, Ruscheinski J,Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076
CrossRef Google scholar
[96]
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S (2019) Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179:1068–1083.e1021
CrossRef Google scholar
[97]
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069
CrossRef Google scholar
[98]
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60
CrossRef Google scholar
[99]
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I,Pe’er I, and Halperin E (2019) FEAST: fast expectation-maximization for microbial source tracking. Nat Methods
CrossRef Google scholar
[100]
Shi W, Li M, Wei G, Tian R, Li C, Wang B, Lin R, Shi C, Chi X, Zhou B (2019) The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 7:14
CrossRef Google scholar
[101]
Shi W, Qi H, Sun Q, Fan G,Liu S, Wang J, Zhu B, Liu H, Zhao F,Wang X (2019) gcMeta: a global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res 47:D637–D648
CrossRef Google scholar
[102]
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843
CrossRef Google scholar
[103]
Sinha R,Abu-Ali G, Vogtmann E,Fodor AA, Ren B, Amir A, Schwager E, Crabtree J,Ma S, Abnet CC (2017) Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (MBQC) project consortium. Nat Biotechnol 35:1077–1086
CrossRef Google scholar
[104]
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE (2017) Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802–806
CrossRef Google scholar
[105]
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M (2019) Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 37:953–961
CrossRef Google scholar
[106]
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW (2018) Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 9:870
CrossRef Google scholar
[107]
Subramanian S, Huq S, Yatsunenko T,Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417
CrossRef Google scholar
[108]
Tange O(2018). Gnu parallel 2018 (Lulu. com).
[109]
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C,Mehlenbacher E, Patel CJ, Kostic AD (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283–295.e288
CrossRef Google scholar
[110]
Tkacz A, Hortala M,Poole PS (2018) Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6:110
CrossRef Google scholar
[111]
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903
CrossRef Google scholar
[112]
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810
CrossRef Google scholar
[113]
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258
CrossRef Google scholar
[114]
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158
CrossRef Google scholar
[115]
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507–511
CrossRef Google scholar
[116]
Vangay P,Hillmann BM, Knights D (2019) Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience 8:giz042
CrossRef Google scholar
[117]
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B (2018) Of genes and microbes: solving the intricacies in host genomes. Protein Cell 9:446–461
CrossRef Google scholar
[118]
Wang J, Jia Z, Zhang B, Peng L, and Zhao F (2019) Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut, gutjnl-2019–318977
CrossRef Google scholar
[119]
Wang J, Thingholm LB, Skiecevičienė J, Rausch P,Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak S (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406
CrossRef Google scholar
[120]
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y (2018) Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67:1614–1625
CrossRef Google scholar
[121]
Wang W, Yang J, Zhang J, Liu Y-X, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W (2020) An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27:601–613.e607
CrossRef Google scholar
[122]
Wang X,Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, and Wang E (2020b) An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull
CrossRef Google scholar
[123]
Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q(2017) GSA: genome sequence archive*. Genom Proteom Bioinf 15:14–18
CrossRef Google scholar
[124]
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R (2017) BugBase predicts organism-level microbiome phenotypes. bioRxiv 133462
CrossRef Google scholar
[125]
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589
CrossRef Google scholar
[126]
Wood DE, Lu J, and Langmead B (2019) Improved metagenomic analysis with Kraken 2. bioRxiv 762302
CrossRef Google scholar
[127]
Wu Y-W, Simmons BA, Singer SW (2015) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607
CrossRef Google scholar
[128]
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J,Zhang D (2015) A catalog of the mouse gut metagenome. Nat Biotechnol 33:1103
CrossRef Google scholar
[129]
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894
CrossRef Google scholar
[130]
Xu Y, Zhao F (2018) Single-cell metagenomics: challenges and applications. Protein Cell 9:501–510
CrossRef Google scholar
[131]
Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9:474–487
CrossRef Google scholar
[132]
Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794
CrossRef Google scholar
[133]
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G (2011) Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29:415–420
CrossRef Google scholar
[134]
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113: E7996–E8005
CrossRef Google scholar
[135]
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Feng B, Chen D, Ren J, Deng M (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462–473
CrossRef Google scholar
[136]
Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684
CrossRef Google scholar
[137]
Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J (2018) Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61:613–621
CrossRef Google scholar
[138]
Zheng M, Zhou N, Liu S, Dang C, Liu Y-X,He S, Zhao Y, Liu W, Wang X (2019) N2O and NO emission from a biological aerated filter treating coking wastewater: main source and microbial community. J Clean Prod 213:365–374
CrossRef Google scholar
[139]
Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132–e132
CrossRef Google scholar
[140]
Zou Y, Xue W, Luo G,Deng Z,Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(823 KB)

Accesses

Citations

Detail

Sections
Recommended

/