Received date: 12 Feb 2020
Accepted date: 16 Mar 2020
Published date: 15 Nov 2020
Copyright
Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
Lin-Yong Zhao , Jinghui Song , Yibin Liu , Chun-Xiao Song , Chengqi Yi . Mapping the epigenetic modifications of DNA and RNA[J]. Protein & Cell, 2020 , 11(11) : 792 -808 . DOI: 10.1007/s13238-020-00733-7
1 |
Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143
|
2 |
Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, Sugita A, Hirose Y, Iwasaki S, Nureki O
|
3 |
Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S,Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308
|
4 |
Arango D,Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD
|
5 |
Ardui S, Ameur A, Vermeesch JR, Hestand MS (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168
|
6 |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45:11356–11370
|
7 |
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crecy-Lagard V,Ross R, Limbach PA, Kotter A
|
8 |
Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269:17697–17704
|
9 |
Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W,Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science (New York, NY) 336:934–937
|
10 |
Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, Reik W, Balasubramanian S (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851
|
11 |
Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440
|
12 |
Booth MJ, Raiber EA, Balasubramanian S (2015) Chemical methods for decoding cytosine modifications in DNA. Chem Rev 115:2240–2254
|
13 |
Boulias K, Toczydlowska-Socha D,Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L
|
14 |
Cao G, Li HB (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003
|
15 |
Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146
|
16 |
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T
|
17 |
Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, Chen RX, Wei WS, Liu Y, Gao CC
|
18 |
Chu JM, Ye TT, Ma CJ, Lan MD, Liu T, Yuan BF, Feng YQ (2018) Existence of Internal N7-methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chem Biol 13:3243–3250
|
19 |
Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547
|
20 |
Clarke J, Wu HC, Jayasinghe L,Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270
|
21 |
Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386.e375
|
22 |
Cui Q, Shi H, Ye P,Li L, Qu Q, Sun G,Sun G, Lu Z, Huang Y, Yang CG
|
23 |
Cui X, Liang Z, Shen L, Zhang Q, Bao S,Geng Y,Zhang B, Leo V, Vardy LA, Lu T
|
24 |
Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S
|
25 |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M
|
26 |
Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC
|
27 |
Dong C, Niu L, Song W, Xiong X, Zhang X, Zhang Z, Yang Y, Yi F, Zhan J, Zhang H
|
28 |
Douvlataniotis K, Bensberg M, Lentini A, Gylemo B, Nestor CE (2020) No evidence for DNA N (6)-methyladenine in mammals. Sci Adv 6:eaay3335
|
29 |
Dubin DT, Taylor RH (1975) The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res 2:1653–1668
|
30 |
Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602
|
31 |
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402
|
32 |
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465
|
33 |
Frye M, Jaffrey SR, Pan T, Rechavi G,Suzuki T (2016) RNA modifications: what have we learned and where are we headed? Nat Rev Genet 17:365–372
|
34 |
Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA
|
35 |
Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin SG, Niedernhofer LJ
|
36 |
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Dore LC
|
37 |
Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A
|
38 |
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A
|
39 |
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS
|
40 |
Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science (New York, NY) 352:1408–1412
|
41 |
Gokhale NS, McIntyre AB, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J
|
42 |
Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
|
43 |
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878
|
44 |
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L,Gu TP, Hu B
|
45 |
Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS
|
46 |
Harper JE, Miceli SM, Roberts RJ, Manley JL (1990) Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18:5735–5741
|
47 |
He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6:863–865
|
48 |
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L
|
49 |
Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M (2013a) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215
|
50 |
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J
|
51 |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY) 333:1300–1303
|
52 |
Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239
|
53 |
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT
|
54 |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG
|
55 |
Karijolich J, Yi C, Yu YT (2015) Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 16:581–585
|
56 |
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY
|
57 |
Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB, Geula S, Hanna JH, Black DL, Darnell JE Jr, Darnell RB (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
|
58 |
Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D, Marshall JB, Poling BC, Tsai K, Gokhale NS, Horner SM
|
59 |
Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464
|
60 |
Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR (2019) Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA 116:6784–6789
|
61 |
Kobayashi H, Kono T (2012) DNA methylation analysis of germ cells by using bisulfite-based sequencing methods. Methods Mol Biol (Clifton, NJ) 825:223–235
|
62 |
Kobayashi H, Sakurai T, Miura F,Imai M, Mochiduki K, Yanagisawa E,Sakashita A, Wakai T, Suzuki Y, Ito T
|
63 |
Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L
|
64 |
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930
|
65 |
Lei Z, Yi C (2017) A radiolabeling-free, qPCR-based method for locus-specific pseudouridine detection. Angew Chem Int Ed Engl 56:14878–14882
|
66 |
Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15:499–504
|
67 |
Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133
|
68 |
Li WW, Gong L, Bayley H (2013) Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew Chem Int Ed Engl 52:4350–4355
|
69 |
Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597
|
70 |
Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016a) Transcriptome-wide mapping reveals reversible and dynamic N (1)-methyladenosine methylome. Nat Chem Biol 12:311–316
|
71 |
Li X, Xiong X, Yi C (2016b) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31
|
72 |
Li W, Zhang X, Lu X, You L, Song Y, Luo Z, Zhang J, Nie J, Zheng W, Xu D
|
73 |
Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen XW
|
74 |
Li Z, Weng H, Su R, Weng X, Zuo Z,Li C, Huang H, Nachtergaele S, Dong L, Hu C
|
75 |
Li QY, Xie NB, Xiong J, Yuan BF, Feng YQ (2018) Single-nucleotide resolution analysis of 5-hydroxymethylcytosine in DNA by enzyme-mediated deamination in combination with sequencing. Anal Chem 90:14622–14628
|
76 |
Lichinchi G, Gao S, Saletore Y, Gonzalez GM (2016a) Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011
|
77 |
Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM (2016b) Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–673
|
78 |
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI (2018) Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 71:244–255.e245
|
79 |
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772
|
80 |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X
|
81 |
Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564
|
82 |
Liu F, Clark W, Luo G, Wang X, Fu Y,Wei J,Wang X, Hao Z, Dai Q, Zheng G
|
83 |
Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–6063
|
84 |
Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS, Smith MA, Novoa EM (2019a) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079
|
85 |
Liu J, Harada BT, He C (2019b) Regulation of gene expression by N (6)-methyladenosine in cancer. Trends Cell Biol 29(6):487–489
|
86 |
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J
|
87 |
Liu Y, You Y, Lu Z, Yang J, Li P,Liu L, Xu H, Niu Y, Cao X (2019d) N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science (New York, NY) 365:1171–1176
|
88 |
Liu Y, Cheng J, Siejka-Zielinska P, Weldon C, Roberts H, Lopopolo M, Magri A, D’Arienzo V, Harris JM, McKeating JA
|
89 |
Louloupi A, Ntini E, Conrad T, Orom UAV (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23:3429–3437
|
90 |
Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9:e110799
|
91 |
Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317
|
92 |
Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, He C(2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25:386–389
|
93 |
Lu W, Tirumuru N, St Gelais C, Koneru PC, Liu C, Kvaratskhelia M, He C, Wu L (2018) N(6)-methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005
|
94 |
Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y,Yang YG (2019) Dynamic methylome of internal mRNA N (7)-methylguanosine and its regulatory role in translation. Cell Res.https://doi.org/10.1016/j.molp.2019.12.007
|
95 |
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q
|
96 |
Meyer KD (2019) DART-seq: an antibody-free method for global m (6)A detection. Nat Methods 16:1275–1280
|
97 |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646
|
98 |
Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX (2016) m(6)A-LAICseq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods 13:692–698
|
99 |
Musheev MU, Baumgärtner A, Krebs L, Niehrs C (2020) The origin of genomic N6-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0504-2
|
100 |
Neri F,Incarnato D, Krepelova A, Rapelli S, Anselmi F,Parlato C, Medana C, Dal Bello F, Oliviero S (2015) Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep 10:674–683
|
101 |
O’Brown ZK, Boulias K, Wang J, Wang SY, O’Brown NM, Hao Z, Shibuya H, Fady PE, Shi Y, He C
|
102 |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
|
103 |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK (2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835. e814
|
104 |
Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, Hagemeier C, Carell T (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem 50:7008–7012
|
105 |
Ping XL, Sun BF, Wang L, Xiao W, Yang X,Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS
|
106 |
Raiber E-A, Hardisty R, van Delft P,Balasubramanian S (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069
|
107 |
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with highthroughput nanopore sequencing. Nat Methods 14:411–413
|
108 |
Roundtree IA, Evans ME, Pan T,He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200
|
109 |
Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255
|
110 |
Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
|
111 |
Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol.https://doi.org/10.1038/nbt.4204
|
112 |
Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y,Mikkelsen TS, Satija R, Ruvkun G
|
113 |
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES
|
114 |
Schwartz S, Mumbach Maxwell R, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D
|
115 |
Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete-Perea J, Sheng W, Gygi SP, Adelman K, Shi Y (2019) PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75(3):620.e9–630.e9
|
116 |
Shafik A, Schumann U, Evers M, Sibbritt T, Preiss T (2016) The emerging epitranscriptomics of long noncoding RNAs. Biochim Biophys Acta 1859:59–70
|
117 |
Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706
|
118 |
Shen Q, Zhang Q, Shi Y,Shi Q, Jiang Y, Gu Y, Li Z, Li X, Zhao K, Wang C
|
119 |
Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439
|
120 |
Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z
|
121 |
Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410
|
122 |
Smallwood SA, Lee HJ, Angermueller C,Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820
|
123 |
Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M (2019) Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE 14: e0216709
|
124 |
Song J, Yi C (2019) Reading chemical modifications in the transcriptome. J Mol Biol.https://doi.org/10.1016/j.jmb.2019.10.006
|
125 |
Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, He C, Korlach J (2011a) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77
|
126 |
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X
|
127 |
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H
|
128 |
Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J
|
129 |
Song J, Zhuang Y, Zhu C,Meng H, Lu B, Xie B, Peng J, Li M, Yi C (2019) Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 16(2):160–169
|
130 |
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033
|
131 |
Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54
|
132 |
Su R, Dong L, Li C, Nachtergaele S,Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C
|
133 |
Sun H, Zhang M, Li K, Bai D, Yi C (2019) Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res 29:80–82
|
134 |
Tahiliani M, Koh KP, Shen Y,Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L
|
135 |
Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915
|
136 |
Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5:e15528
|
137 |
Tsai K, Courtney DG, Cullen BR (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919
|
138 |
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K (2017) AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 7:42271
|
139 |
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Therapeut 195:172–185
|
140 |
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton B, Marks K
|
141 |
Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624
|
142 |
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Holzer M, Marz M (2019) Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 29:1545–1554
|
143 |
Vilfan ID, Tsai YC, Clark TA, Wegener J, Dai Q, Yi C, Pan T, Turner SW, Korlach J (2013) Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnol 11:8
|
144 |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198
|
145 |
Wang L, Wen M, Cao X (2019) Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. https://doi.org/10.1126/science.aav0758
|
146 |
Wang Y, Xiao Y, Dong S,Yu Q,Jia G (2020) Antibody-free enzymeassisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0525-x
|
147 |
Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862
|
148 |
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H,Cui X, Su R, Klungland A
|
149 |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F,Liu H, Yang P, Tan L
|
150 |
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND
|
151 |
Wongsurawat T, Jenjaroenpun P, Wassenaar TM, Wadley TD, Wanchai V, Akel NS, Franco AT, Jennings ML, Ussery DW, Nookaew I (2018) Decoding the epitranscriptional landscape from native RNA sequences. bioRxiv. https://doi.org/10.1101/487819
|
152 |
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A,Quick J
|
153 |
Wu H, Wu X, Shen L, Zhang Y (2014) Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat Biotechnol 32:1231–1240
|
154 |
Wu H, Wu X, Zhang Y (2016) Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Nat Protoc 11:1081–1100
|
155 |
Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W
|
156 |
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S
|
157 |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY
|
158 |
Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, Jia G, Liu X, Shi J, Wang W
|
159 |
Xiong X, Li X, Wang K, Yi C (2018) Perspectives on topology of the human m(1)A methylome at single nucleotide resolution. RNA (New York, NY) 24:1437–1442
|
160 |
Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC
|
161 |
Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447
|
162 |
Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W
|
163 |
Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, Sun BF, Li A, Xia J, Chen J
|
164 |
Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C (2012a) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170
|
165 |
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B
|
166 |
Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–1423
|
167 |
Yuan F, Bi Y, Siejka-Zielinska P, Zhou YL, Zhang XX, Song CX (2019) Bisulfite-free and base-resolution analysis of 5-methylcytidine and 5-hydroxymethylcytidine in RNA with peroxotungstate. Chem Commun (Camb) 55:2328–2331
|
168 |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H
|
169 |
Zaringhalam M, Papavasiliou FN (2016) Pseudouridylation meets next-generation sequencing. Methods (San Diego, Calif) 107:63–72
|
170 |
Zeng H, He B, Xia B, Bai D, Lu X, Cai J, Chen L, Zhou A, Zhu C, Meng H
|
171 |
Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P,Liu J
|
172 |
Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X
|
173 |
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, Luo GZ (2019b) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5:250
|
174 |
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ
|
175 |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH
|
176 |
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594
|
177 |
Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Bruning JC, Qian SB (2018) N(6)-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell 69:636–647.e637
|
178 |
Zhou H, Rauch S, Dai Q, Cui X, Zhang Z, Nachtergaele S, Sepich C, He C, Dickinson BC (2019) Evolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNA. Nat Methods 16:1281–1288
|
179 |
Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-Cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e725
|
/
〈 | 〉 |