Mapping the epigenetic modifications of DNA and RNA
Lin-Yong Zhao, Jinghui Song, Yibin Liu, Chun-Xiao Song, Chengqi Yi
Mapping the epigenetic modifications of DNA and RNA
Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
DNA modification / DNA methylation / RNA modification / epitranscriptomics / epigenetics / long read sequencing
[1] |
Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143
CrossRef
Google scholar
|
[2] |
Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, Sugita A, Hirose Y, Iwasaki S, Nureki O
CrossRef
Google scholar
|
[3] |
Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S,Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308
CrossRef
Google scholar
|
[4] |
Arango D,Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD
CrossRef
Google scholar
|
[5] |
Ardui S, Ameur A, Vermeesch JR, Hestand MS (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168
CrossRef
Google scholar
|
[6] |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45:11356–11370
CrossRef
Google scholar
|
[7] |
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crecy-Lagard V,Ross R, Limbach PA, Kotter A
CrossRef
Google scholar
|
[8] |
Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269:17697–17704
|
[9] |
Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W,Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science (New York, NY) 336:934–937
CrossRef
Google scholar
|
[10] |
Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, Reik W, Balasubramanian S (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851
CrossRef
Google scholar
|
[11] |
Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440
CrossRef
Google scholar
|
[12] |
Booth MJ, Raiber EA, Balasubramanian S (2015) Chemical methods for decoding cytosine modifications in DNA. Chem Rev 115:2240–2254
CrossRef
Google scholar
|
[13] |
Boulias K, Toczydlowska-Socha D,Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L
CrossRef
Google scholar
|
[14] |
Cao G, Li HB (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003
CrossRef
Google scholar
|
[15] |
Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146
CrossRef
Google scholar
|
[16] |
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T
CrossRef
Google scholar
|
[17] |
Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, Chen RX, Wei WS, Liu Y, Gao CC
CrossRef
Google scholar
|
[18] |
Chu JM, Ye TT, Ma CJ, Lan MD, Liu T, Yuan BF, Feng YQ (2018) Existence of Internal N7-methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chem Biol 13:3243–3250
CrossRef
Google scholar
|
[19] |
Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547
CrossRef
Google scholar
|
[20] |
Clarke J, Wu HC, Jayasinghe L,Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270
CrossRef
Google scholar
|
[21] |
Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386.e375
CrossRef
Google scholar
|
[22] |
Cui Q, Shi H, Ye P,Li L, Qu Q, Sun G,Sun G, Lu Z, Huang Y, Yang CG
CrossRef
Google scholar
|
[23] |
Cui X, Liang Z, Shen L, Zhang Q, Bao S,Geng Y,Zhang B, Leo V, Vardy LA, Lu T
CrossRef
Google scholar
|
[24] |
Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S
CrossRef
Google scholar
|
[25] |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M
CrossRef
Google scholar
|
[26] |
Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC
CrossRef
Google scholar
|
[27] |
Dong C, Niu L, Song W, Xiong X, Zhang X, Zhang Z, Yang Y, Yi F, Zhan J, Zhang H
CrossRef
Google scholar
|
[28] |
Douvlataniotis K, Bensberg M, Lentini A, Gylemo B, Nestor CE (2020) No evidence for DNA N (6)-methyladenine in mammals. Sci Adv 6:eaay3335
CrossRef
Google scholar
|
[29] |
Dubin DT, Taylor RH (1975) The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res 2:1653–1668
CrossRef
Google scholar
|
[30] |
Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602
CrossRef
Google scholar
|
[31] |
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402
CrossRef
Google scholar
|
[32] |
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465
CrossRef
Google scholar
|
[33] |
Frye M, Jaffrey SR, Pan T, Rechavi G,Suzuki T (2016) RNA modifications: what have we learned and where are we headed? Nat Rev Genet 17:365–372
CrossRef
Google scholar
|
[34] |
Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA
CrossRef
Google scholar
|
[35] |
Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin SG, Niedernhofer LJ
CrossRef
Google scholar
|
[36] |
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Dore LC
CrossRef
Google scholar
|
[37] |
Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A
CrossRef
Google scholar
|
[38] |
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A
CrossRef
Google scholar
|
[39] |
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS
CrossRef
Google scholar
|
[40] |
Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science (New York, NY) 352:1408–1412
CrossRef
Google scholar
|
[41] |
Gokhale NS, McIntyre AB, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J
CrossRef
Google scholar
|
[42] |
Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
CrossRef
Google scholar
|
[43] |
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878
CrossRef
Google scholar
|
[44] |
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L,Gu TP, Hu B
CrossRef
Google scholar
|
[45] |
Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS
CrossRef
Google scholar
|
[46] |
Harper JE, Miceli SM, Roberts RJ, Manley JL (1990) Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18:5735–5741
CrossRef
Google scholar
|
[47] |
He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6:863–865
CrossRef
Google scholar
|
[48] |
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L
CrossRef
Google scholar
|
[49] |
Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M (2013a) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215
CrossRef
Google scholar
|
[50] |
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J
CrossRef
Google scholar
|
[51] |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY) 333:1300–1303
CrossRef
Google scholar
|
[52] |
Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239
CrossRef
Google scholar
|
[53] |
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT
CrossRef
Google scholar
|
[54] |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG
CrossRef
Google scholar
|
[55] |
Karijolich J, Yi C, Yu YT (2015) Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 16:581–585
CrossRef
Google scholar
|
[56] |
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY
CrossRef
Google scholar
|
[57] |
Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB, Geula S, Hanna JH, Black DL, Darnell JE Jr, Darnell RB (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
CrossRef
Google scholar
|
[58] |
Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D, Marshall JB, Poling BC, Tsai K, Gokhale NS, Horner SM
CrossRef
Google scholar
|
[59] |
Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464
CrossRef
Google scholar
|
[60] |
Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR (2019) Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA 116:6784–6789
CrossRef
Google scholar
|
[61] |
Kobayashi H, Kono T (2012) DNA methylation analysis of germ cells by using bisulfite-based sequencing methods. Methods Mol Biol (Clifton, NJ) 825:223–235
CrossRef
Google scholar
|
[62] |
Kobayashi H, Sakurai T, Miura F,Imai M, Mochiduki K, Yanagisawa E,Sakashita A, Wakai T, Suzuki Y, Ito T
CrossRef
Google scholar
|
[63] |
Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L
CrossRef
Google scholar
|
[64] |
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930
CrossRef
Google scholar
|
[65] |
Lei Z, Yi C (2017) A radiolabeling-free, qPCR-based method for locus-specific pseudouridine detection. Angew Chem Int Ed Engl 56:14878–14882
CrossRef
Google scholar
|
[66] |
Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15:499–504
CrossRef
Google scholar
|
[67] |
Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133
CrossRef
Google scholar
|
[68] |
Li WW, Gong L, Bayley H (2013) Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew Chem Int Ed Engl 52:4350–4355
CrossRef
Google scholar
|
[69] |
Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597
CrossRef
Google scholar
|
[70] |
Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016a) Transcriptome-wide mapping reveals reversible and dynamic N (1)-methyladenosine methylome. Nat Chem Biol 12:311–316
CrossRef
Google scholar
|
[71] |
Li X, Xiong X, Yi C (2016b) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31
CrossRef
Google scholar
|
[72] |
Li W, Zhang X, Lu X, You L, Song Y, Luo Z, Zhang J, Nie J, Zheng W, Xu D
CrossRef
Google scholar
|
[73] |
Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen XW
CrossRef
Google scholar
|
[74] |
Li Z, Weng H, Su R, Weng X, Zuo Z,Li C, Huang H, Nachtergaele S, Dong L, Hu C
CrossRef
Google scholar
|
[75] |
Li QY, Xie NB, Xiong J, Yuan BF, Feng YQ (2018) Single-nucleotide resolution analysis of 5-hydroxymethylcytosine in DNA by enzyme-mediated deamination in combination with sequencing. Anal Chem 90:14622–14628
CrossRef
Google scholar
|
[76] |
Lichinchi G, Gao S, Saletore Y, Gonzalez GM (2016a) Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011
CrossRef
Google scholar
|
[77] |
Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM (2016b) Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–673
CrossRef
Google scholar
|
[78] |
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI (2018) Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 71:244–255.e245
CrossRef
Google scholar
|
[79] |
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772
CrossRef
Google scholar
|
[80] |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X
CrossRef
Google scholar
|
[81] |
Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564
CrossRef
Google scholar
|
[82] |
Liu F, Clark W, Luo G, Wang X, Fu Y,Wei J,Wang X, Hao Z, Dai Q, Zheng G
CrossRef
Google scholar
|
[83] |
Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–6063
CrossRef
Google scholar
|
[84] |
Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS, Smith MA, Novoa EM (2019a) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079
CrossRef
Google scholar
|
[85] |
Liu J, Harada BT, He C (2019b) Regulation of gene expression by N (6)-methyladenosine in cancer. Trends Cell Biol 29(6):487–489
CrossRef
Google scholar
|
[86] |
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J
CrossRef
Google scholar
|
[87] |
Liu Y, You Y, Lu Z, Yang J, Li P,Liu L, Xu H, Niu Y, Cao X (2019d) N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science (New York, NY) 365:1171–1176
CrossRef
Google scholar
|
[88] |
Liu Y, Cheng J, Siejka-Zielinska P, Weldon C, Roberts H, Lopopolo M, Magri A, D’Arienzo V, Harris JM, McKeating JA
CrossRef
Google scholar
|
[89] |
Louloupi A, Ntini E, Conrad T, Orom UAV (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23:3429–3437
CrossRef
Google scholar
|
[90] |
Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9:e110799
CrossRef
Google scholar
|
[91] |
Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317
CrossRef
Google scholar
|
[92] |
Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, He C(2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25:386–389
CrossRef
Google scholar
|
[93] |
Lu W, Tirumuru N, St Gelais C, Koneru PC, Liu C, Kvaratskhelia M, He C, Wu L (2018) N(6)-methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005
CrossRef
Google scholar
|
[94] |
Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y,Yang YG (2019) Dynamic methylome of internal mRNA N (7)-methylguanosine and its regulatory role in translation. Cell Res.https://doi.org/10.1016/j.molp.2019.12.007
CrossRef
Google scholar
|
[95] |
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q
CrossRef
Google scholar
|
[96] |
Meyer KD (2019) DART-seq: an antibody-free method for global m (6)A detection. Nat Methods 16:1275–1280
CrossRef
Google scholar
|
[97] |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646
CrossRef
Google scholar
|
[98] |
Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX (2016) m(6)A-LAICseq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods 13:692–698
CrossRef
Google scholar
|
[99] |
Musheev MU, Baumgärtner A, Krebs L, Niehrs C (2020) The origin of genomic N6-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0504-2
CrossRef
Google scholar
|
[100] |
Neri F,Incarnato D, Krepelova A, Rapelli S, Anselmi F,Parlato C, Medana C, Dal Bello F, Oliviero S (2015) Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep 10:674–683
CrossRef
Google scholar
|
[101] |
O’Brown ZK, Boulias K, Wang J, Wang SY, O’Brown NM, Hao Z, Shibuya H, Fady PE, Shi Y, He C
CrossRef
Google scholar
|
[102] |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
CrossRef
Google scholar
|
[103] |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK (2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835. e814
CrossRef
Google scholar
|
[104] |
Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, Hagemeier C, Carell T (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem 50:7008–7012
CrossRef
Google scholar
|
[105] |
Ping XL, Sun BF, Wang L, Xiao W, Yang X,Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS
CrossRef
Google scholar
|
[106] |
Raiber E-A, Hardisty R, van Delft P,Balasubramanian S (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069
CrossRef
Google scholar
|
[107] |
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with highthroughput nanopore sequencing. Nat Methods 14:411–413
CrossRef
Google scholar
|
[108] |
Roundtree IA, Evans ME, Pan T,He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200
CrossRef
Google scholar
|
[109] |
Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255
CrossRef
Google scholar
|
[110] |
Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
CrossRef
Google scholar
|
[111] |
Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol.https://doi.org/10.1038/nbt.4204
CrossRef
Google scholar
|
[112] |
Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y,Mikkelsen TS, Satija R, Ruvkun G
CrossRef
Google scholar
|
[113] |
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES
CrossRef
Google scholar
|
[114] |
Schwartz S, Mumbach Maxwell R, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D
CrossRef
Google scholar
|
[115] |
Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete-Perea J, Sheng W, Gygi SP, Adelman K, Shi Y (2019) PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75(3):620.e9–630.e9
CrossRef
Google scholar
|
[116] |
Shafik A, Schumann U, Evers M, Sibbritt T, Preiss T (2016) The emerging epitranscriptomics of long noncoding RNAs. Biochim Biophys Acta 1859:59–70
CrossRef
Google scholar
|
[117] |
Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706
CrossRef
Google scholar
|
[118] |
Shen Q, Zhang Q, Shi Y,Shi Q, Jiang Y, Gu Y, Li Z, Li X, Zhao K, Wang C
CrossRef
Google scholar
|
[119] |
Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439
CrossRef
Google scholar
|
[120] |
Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z
CrossRef
Google scholar
|
[121] |
Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410
CrossRef
Google scholar
|
[122] |
Smallwood SA, Lee HJ, Angermueller C,Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820
CrossRef
Google scholar
|
[123] |
Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M (2019) Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE 14: e0216709
CrossRef
Google scholar
|
[124] |
Song J, Yi C (2019) Reading chemical modifications in the transcriptome. J Mol Biol.https://doi.org/10.1016/j.jmb.2019.10.006
CrossRef
Google scholar
|
[125] |
Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, He C, Korlach J (2011a) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77
CrossRef
Google scholar
|
[126] |
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X
CrossRef
Google scholar
|
[127] |
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H
CrossRef
Google scholar
|
[128] |
Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J
CrossRef
Google scholar
|
[129] |
Song J, Zhuang Y, Zhu C,Meng H, Lu B, Xie B, Peng J, Li M, Yi C (2019) Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 16(2):160–169
CrossRef
Google scholar
|
[130] |
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033
CrossRef
Google scholar
|
[131] |
Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54
CrossRef
Google scholar
|
[132] |
Su R, Dong L, Li C, Nachtergaele S,Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C
CrossRef
Google scholar
|
[133] |
Sun H, Zhang M, Li K, Bai D, Yi C (2019) Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res 29:80–82
CrossRef
Google scholar
|
[134] |
Tahiliani M, Koh KP, Shen Y,Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L
CrossRef
Google scholar
|
[135] |
Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915
CrossRef
Google scholar
|
[136] |
Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5:e15528
CrossRef
Google scholar
|
[137] |
Tsai K, Courtney DG, Cullen BR (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919
CrossRef
Google scholar
|
[138] |
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K (2017) AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 7:42271
CrossRef
Google scholar
|
[139] |
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Therapeut 195:172–185
CrossRef
Google scholar
|
[140] |
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton B, Marks K
CrossRef
Google scholar
|
[141] |
Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624
CrossRef
Google scholar
|
[142] |
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Holzer M, Marz M (2019) Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 29:1545–1554
CrossRef
Google scholar
|
[143] |
Vilfan ID, Tsai YC, Clark TA, Wegener J, Dai Q, Yi C, Pan T, Turner SW, Korlach J (2013) Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnol 11:8
CrossRef
Google scholar
|
[144] |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198
CrossRef
Google scholar
|
[145] |
Wang L, Wen M, Cao X (2019) Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. https://doi.org/10.1126/science.aav0758
CrossRef
Google scholar
|
[146] |
Wang Y, Xiao Y, Dong S,Yu Q,Jia G (2020) Antibody-free enzymeassisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0525-x
CrossRef
Google scholar
|
[147] |
Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862
CrossRef
Google scholar
|
[148] |
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H,Cui X, Su R, Klungland A
CrossRef
Google scholar
|
[149] |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F,Liu H, Yang P, Tan L
CrossRef
Google scholar
|
[150] |
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND
CrossRef
Google scholar
|
[151] |
Wongsurawat T, Jenjaroenpun P, Wassenaar TM, Wadley TD, Wanchai V, Akel NS, Franco AT, Jennings ML, Ussery DW, Nookaew I (2018) Decoding the epitranscriptional landscape from native RNA sequences. bioRxiv. https://doi.org/10.1101/487819
CrossRef
Google scholar
|
[152] |
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A,Quick J
CrossRef
Google scholar
|
[153] |
Wu H, Wu X, Shen L, Zhang Y (2014) Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat Biotechnol 32:1231–1240
CrossRef
Google scholar
|
[154] |
Wu H, Wu X, Zhang Y (2016) Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Nat Protoc 11:1081–1100
CrossRef
Google scholar
|
[155] |
Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W
CrossRef
Google scholar
|
[156] |
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S
CrossRef
Google scholar
|
[157] |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY
CrossRef
Google scholar
|
[158] |
Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, Jia G, Liu X, Shi J, Wang W
CrossRef
Google scholar
|
[159] |
Xiong X, Li X, Wang K, Yi C (2018) Perspectives on topology of the human m(1)A methylome at single nucleotide resolution. RNA (New York, NY) 24:1437–1442
CrossRef
Google scholar
|
[160] |
Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC
CrossRef
Google scholar
|
[161] |
Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447
CrossRef
Google scholar
|
[162] |
Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W
CrossRef
Google scholar
|
[163] |
Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, Sun BF, Li A, Xia J, Chen J
CrossRef
Google scholar
|
[164] |
Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C (2012a) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170
CrossRef
Google scholar
|
[165] |
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B
CrossRef
Google scholar
|
[166] |
Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–1423
CrossRef
Google scholar
|
[167] |
Yuan F, Bi Y, Siejka-Zielinska P, Zhou YL, Zhang XX, Song CX (2019) Bisulfite-free and base-resolution analysis of 5-methylcytidine and 5-hydroxymethylcytidine in RNA with peroxotungstate. Chem Commun (Camb) 55:2328–2331
CrossRef
Google scholar
|
[168] |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H
CrossRef
Google scholar
|
[169] |
Zaringhalam M, Papavasiliou FN (2016) Pseudouridylation meets next-generation sequencing. Methods (San Diego, Calif) 107:63–72
CrossRef
Google scholar
|
[170] |
Zeng H, He B, Xia B, Bai D, Lu X, Cai J, Chen L, Zhou A, Zhu C, Meng H
CrossRef
Google scholar
|
[171] |
Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P,Liu J
CrossRef
Google scholar
|
[172] |
Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X
CrossRef
Google scholar
|
[173] |
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, Luo GZ (2019b) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5:250
CrossRef
Google scholar
|
[174] |
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ
CrossRef
Google scholar
|
[175] |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH
CrossRef
Google scholar
|
[176] |
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594
CrossRef
Google scholar
|
[177] |
Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Bruning JC, Qian SB (2018) N(6)-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell 69:636–647.e637
CrossRef
Google scholar
|
[178] |
Zhou H, Rauch S, Dai Q, Cui X, Zhang Z, Nachtergaele S, Sepich C, He C, Dickinson BC (2019) Evolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNA. Nat Methods 16:1281–1288
CrossRef
Google scholar
|
[179] |
Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-Cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e725
CrossRef
Google scholar
|
/
〈 | 〉 |