The expanded development and application of CRISPR system for sensitive nucleotide detection
Published date: 15 Sep 2020
Copyright
Fengjing Jia , Xuewen Li , Chao Zhang , Xueming Tang . The expanded development and application of CRISPR system for sensitive nucleotide detection[J]. Protein & Cell, 2020 , 11(9) : 624 -629 . DOI: 10.1007/s13238-020-00708-8
1 |
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L
|
2 |
Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F (2019) Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR J 2:165–171
|
3 |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A
|
4 |
Barrangou R, Marraffini Luciano A (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244
|
5 |
Chang W, Liu W, Liu Y, Zhan F, Chen H, Lei H,Liu Y (2019) Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Microchim Acta 186:243
|
6 |
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439
|
7 |
East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273
|
8 |
Field AE, Robertson N, Wang T, Havas A, Ideker T, Adams PD (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71:882–895
|
9 |
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444
|
10 |
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS
|
11 |
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA
|
12 |
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842
|
13 |
Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170
|
14 |
Huang M, Zhou X, Wang H, Xing D (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem 90:2193–2200
|
15 |
Ishino Y, Shinagawa H, Makino K,Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433
|
16 |
Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575
|
17 |
Jenkins S, Yang JC, Ramalingam SS, Yu K, Patel S, Weston S, Hodge R, Cantarini M, Janne PA, Mitsudomi T (2017) Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol 12:1061–1070
|
18 |
Jia C, Huai C, Ding J,Hu L, Su B, Chen H, Lu D (2018) New applications of CRISPR/Cas9 system on mutant DNA detection. Gene 641:55–62
|
19 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
|
20 |
Kebed YGCM (2015) Review article: genetically modified crops and food security. Food Sci Qual Manage 42:41–49
|
21 |
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e614
|
22 |
Li S-Y, Cheng Q-X, Wang J-M, Li X-Y, Zhang Z-L, Gao S,Cao R-B, Zhao G-P, Wang J(2018) CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20
|
23 |
Li L, Li S, Wu N, Wu J, Wang G,Zhao G,Wang J (2019) HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8:2228–2237
|
24 |
Liang M,Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L,Wang M, Wang K-F,Wang Z et al (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10:3672
|
25 |
Metsky HC, Freije CA, Kosoko-Thoroddsen T-SF, Sabeti PC, Myhrvold C (2020) CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach. bioRxiv.https://doi.org/10.1101/2020.02.26.967026
|
26 |
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA
|
27 |
Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M
|
28 |
Shmakov S, Abudayyeh Omar O, Makarova Kira S, Wolf Yuri I, Gootenberg Jonathan S, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397
|
29 |
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266
|
30 |
Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:212
|
31 |
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4:63
|
32 |
Teng F, Cui T, Gao Q, Guo L, Wan H, Li W (2019) Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 5:23
|
33 |
Wang X-W, Hu L-F, Hao J, Liao L-Q, Chiu Y-T, Shi M, Wang Y (2019) A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol 21:522–530
|
34 |
Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70:327–339.e325
|
35 |
Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV
|
36 |
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E,Joung J, van der Oost J, Regev A
|
37 |
Zhang K, Deng R, Teng X, Li Y, Sun Y,Ren X, Li J (2018) Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J Am Chem Soc 140:11293–11301
|
38 |
Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu X-F (2018) A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun 9:5012
|
/
〈 | 〉 |