The expanded development and application of CRISPR system for sensitive nucleotide detection

Fengjing Jia, Xuewen Li, Chao Zhang, Xueming Tang

PDF(924 KB)
PDF(924 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (9) : 624-629. DOI: 10.1007/s13238-020-00708-8
COMMENTARY
COMMENTARY

The expanded development and application of CRISPR system for sensitive nucleotide detection

Author information +
History +

Cite this article

Download citation ▾
Fengjing Jia, Xuewen Li, Chao Zhang, Xueming Tang. The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein Cell, 2020, 11(9): 624‒629 https://doi.org/10.1007/s13238-020-00708-8

References

[1]
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L (2016) C2c2 is a single-component programmable RNAguided RNA-targeting CRISPR effector. Science 353:aaf5573
CrossRef Google scholar
[2]
Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F (2019) Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR J 2:165–171
CrossRef Google scholar
[3]
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157
CrossRef Google scholar
[4]
Barrangou R, Marraffini Luciano A (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244
CrossRef Google scholar
[5]
Chang W, Liu W, Liu Y, Zhan F, Chen H, Lei H,Liu Y (2019) Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Microchim Acta 186:243
CrossRef Google scholar
[6]
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439
CrossRef Google scholar
[7]
East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273
CrossRef Google scholar
[8]
Field AE, Robertson N, Wang T, Havas A, Ideker T, Adams PD (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71:882–895
CrossRef Google scholar
[9]
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444
CrossRef Google scholar
[10]
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS (2019) Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell 76:826–837.e811
CrossRef Google scholar
[11]
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442
CrossRef Google scholar
[12]
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842
CrossRef Google scholar
[13]
Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170
CrossRef Google scholar
[14]
Huang M, Zhou X, Wang H, Xing D (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem 90:2193–2200
CrossRef Google scholar
[15]
Ishino Y, Shinagawa H, Makino K,Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433
CrossRef Google scholar
[16]
Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575
CrossRef Google scholar
[17]
Jenkins S, Yang JC, Ramalingam SS, Yu K, Patel S, Weston S, Hodge R, Cantarini M, Janne PA, Mitsudomi T (2017) Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol 12:1061–1070
CrossRef Google scholar
[18]
Jia C, Huai C, Ding J,Hu L, Su B, Chen H, Lu D (2018) New applications of CRISPR/Cas9 system on mutant DNA detection. Gene 641:55–62
CrossRef Google scholar
[19]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CrossRef Google scholar
[20]
Kebed YGCM (2015) Review article: genetically modified crops and food security. Food Sci Qual Manage 42:41–49
[21]
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e614
CrossRef Google scholar
[22]
Li S-Y, Cheng Q-X, Wang J-M, Li X-Y, Zhang Z-L, Gao S,Cao R-B, Zhao G-P, Wang J(2018) CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20
CrossRef Google scholar
[23]
Li L, Li S, Wu N, Wu J, Wang G,Zhao G,Wang J (2019) HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8:2228–2237
CrossRef Google scholar
[24]
Liang M,Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L,Wang M, Wang K-F,Wang Z et al (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10:3672
CrossRef Google scholar
[25]
Metsky HC, Freije CA, Kosoko-Thoroddsen T-SF, Sabeti PC, Myhrvold C (2020) CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach. bioRxiv.https://doi.org/10.1101/2020.02.26.967026
CrossRef Google scholar
[26]
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–448
CrossRef Google scholar
[27]
Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–1266
CrossRef Google scholar
[28]
Shmakov S, Abudayyeh Omar O, Makarova Kira S, Wolf Yuri I, Gootenberg Jonathan S, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397
CrossRef Google scholar
[29]
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266
CrossRef Google scholar
[30]
Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:212
CrossRef Google scholar
[31]
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4:63
CrossRef Google scholar
[32]
Teng F, Cui T, Gao Q, Guo L, Wan H, Li W (2019) Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 5:23
CrossRef Google scholar
[33]
Wang X-W, Hu L-F, Hao J, Liao L-Q, Chiu Y-T, Shi M, Wang Y (2019) A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol 21:522–530
CrossRef Google scholar
[34]
Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70:327–339.e325
CrossRef Google scholar
[35]
Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV (2019) Functionally diverse type V CRISPR-Cas systems. Science 363:88
CrossRef Google scholar
[36]
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E,Joung J, van der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771
CrossRef Google scholar
[37]
Zhang K, Deng R, Teng X, Li Y, Sun Y,Ren X, Li J (2018) Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J Am Chem Soc 140:11293–11301
CrossRef Google scholar
[38]
Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu X-F (2018) A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun 9:5012
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(924 KB)

Accesses

Citations

Detail

Sections
Recommended

/