The expanded development and application of CRISPR system for sensitive nucleotide detection
Fengjing Jia, Xuewen Li, Chao Zhang, Xueming Tang
The expanded development and application of CRISPR system for sensitive nucleotide detection
[1] |
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L
CrossRef
Google scholar
|
[2] |
Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F (2019) Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR J 2:165–171
CrossRef
Google scholar
|
[3] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A
CrossRef
Google scholar
|
[4] |
Barrangou R, Marraffini Luciano A (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244
CrossRef
Google scholar
|
[5] |
Chang W, Liu W, Liu Y, Zhan F, Chen H, Lei H,Liu Y (2019) Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Microchim Acta 186:243
CrossRef
Google scholar
|
[6] |
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439
CrossRef
Google scholar
|
[7] |
East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273
CrossRef
Google scholar
|
[8] |
Field AE, Robertson N, Wang T, Havas A, Ideker T, Adams PD (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71:882–895
CrossRef
Google scholar
|
[9] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444
CrossRef
Google scholar
|
[10] |
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS
CrossRef
Google scholar
|
[11] |
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA
CrossRef
Google scholar
|
[12] |
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842
CrossRef
Google scholar
|
[13] |
Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170
CrossRef
Google scholar
|
[14] |
Huang M, Zhou X, Wang H, Xing D (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem 90:2193–2200
CrossRef
Google scholar
|
[15] |
Ishino Y, Shinagawa H, Makino K,Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433
CrossRef
Google scholar
|
[16] |
Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575
CrossRef
Google scholar
|
[17] |
Jenkins S, Yang JC, Ramalingam SS, Yu K, Patel S, Weston S, Hodge R, Cantarini M, Janne PA, Mitsudomi T (2017) Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol 12:1061–1070
CrossRef
Google scholar
|
[18] |
Jia C, Huai C, Ding J,Hu L, Su B, Chen H, Lu D (2018) New applications of CRISPR/Cas9 system on mutant DNA detection. Gene 641:55–62
CrossRef
Google scholar
|
[19] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CrossRef
Google scholar
|
[20] |
Kebed YGCM (2015) Review article: genetically modified crops and food security. Food Sci Qual Manage 42:41–49
|
[21] |
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e614
CrossRef
Google scholar
|
[22] |
Li S-Y, Cheng Q-X, Wang J-M, Li X-Y, Zhang Z-L, Gao S,Cao R-B, Zhao G-P, Wang J(2018) CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20
CrossRef
Google scholar
|
[23] |
Li L, Li S, Wu N, Wu J, Wang G,Zhao G,Wang J (2019) HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8:2228–2237
CrossRef
Google scholar
|
[24] |
Liang M,Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L,Wang M, Wang K-F,Wang Z et al (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10:3672
CrossRef
Google scholar
|
[25] |
Metsky HC, Freije CA, Kosoko-Thoroddsen T-SF, Sabeti PC, Myhrvold C (2020) CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach. bioRxiv.https://doi.org/10.1101/2020.02.26.967026
CrossRef
Google scholar
|
[26] |
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA
CrossRef
Google scholar
|
[27] |
Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M
CrossRef
Google scholar
|
[28] |
Shmakov S, Abudayyeh Omar O, Makarova Kira S, Wolf Yuri I, Gootenberg Jonathan S, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397
CrossRef
Google scholar
|
[29] |
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266
CrossRef
Google scholar
|
[30] |
Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:212
CrossRef
Google scholar
|
[31] |
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4:63
CrossRef
Google scholar
|
[32] |
Teng F, Cui T, Gao Q, Guo L, Wan H, Li W (2019) Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 5:23
CrossRef
Google scholar
|
[33] |
Wang X-W, Hu L-F, Hao J, Liao L-Q, Chiu Y-T, Shi M, Wang Y (2019) A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol 21:522–530
CrossRef
Google scholar
|
[34] |
Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70:327–339.e325
CrossRef
Google scholar
|
[35] |
Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV
CrossRef
Google scholar
|
[36] |
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E,Joung J, van der Oost J, Regev A
CrossRef
Google scholar
|
[37] |
Zhang K, Deng R, Teng X, Li Y, Sun Y,Ren X, Li J (2018) Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J Am Chem Soc 140:11293–11301
CrossRef
Google scholar
|
[38] |
Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu X-F (2018) A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun 9:5012
CrossRef
Google scholar
|
/
〈 | 〉 |