LETTER

FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice

  • Hongying Gao 1,2 ,
  • Chunwei Zheng 3 ,
  • Jian Du 4 ,
  • Yue Wu 1 ,
  • Yonghui Sun 1 ,
  • Chunsheng Han , 3,5 ,
  • Kehkooi Kee , 4 ,
  • Yu Rao , 1
Expand
  • 1. MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry Chemical Biology, Tsinghua University, Beijing 100084, China
  • 2. Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
  • 3. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100084, China
  • 4. Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
  • 5. University of Chinese Academy of Sciences, Savaid Medical School, Beijing 100049, China

Published date: 15 Jul 2020

Copyright

2020 The Author(s)

Cite this article

Hongying Gao , Chunwei Zheng , Jian Du , Yue Wu , Yonghui Sun , Chunsheng Han , Kehkooi Kee , Yu Rao . FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice[J]. Protein & Cell, 2020 , 11(7) : 534 -539 . DOI: 10.1007/s13238-020-00732-8

1
Chaible LM, Corat MA, Abdelhay E, Dagli ML (2010) Genetically modified animals for use in research and biotechnology. Genet Mol Res 9:1469–1482

DOI

2
Chan AW (2013) Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 54:211–223

DOI

3
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

DOI

4
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538:217–227

DOI

5
Dhanjal JK, Radhakrishnan N, Sundar D (2017) Identifying synthetic lethal targets using CRISPR/Cas9 system. Methods 131:66–73

DOI

6
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

DOI

7
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

DOI

8
Gao H,Wu Y, Sun Y, Yang Y,Zhou G, Rao Y (2019) Design, synthesis, and evaluation of highly potentFAK-targetingPROTACs. ACSMed Chem Lett.https://doi.org/10.1021/acsmedchemlett.1029b00372

DOI

9
Gungor-Ordueri NE, Mruk DD, Wan HT, Wong EW, Celik-Ozenci C, Lie PP, Cheng CY (2014) New insights into FAK function and regulation during spermatogenesis. Histol Histopathol 29:977–989

10
Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225

DOI

11
Raina K, Crews CM (2010) Chemical inducers of targeted protein degradation. J Biol Chem 285:11057–11060

DOI

12
Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944

DOI

13
Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–1070

DOI

14
Siu ER, Wong EW, Mruk DD, Porto CS, Cheng CY (2009) Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 106:9298–9303

DOI

15
Zheng C,Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL (1998) Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 273:2384–2389

DOI

Outlines

/