FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice

Hongying Gao, Chunwei Zheng, Jian Du, Yue Wu, Yonghui Sun, Chunsheng Han, Kehkooi Kee, Yu Rao

PDF(1629 KB)
PDF(1629 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (7) : 534-539. DOI: 10.1007/s13238-020-00732-8
LETTER
LETTER

FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice

Author information +
History +

Cite this article

Download citation ▾
Hongying Gao, Chunwei Zheng, Jian Du, Yue Wu, Yonghui Sun, Chunsheng Han, Kehkooi Kee, Yu Rao. FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice. Protein Cell, 2020, 11(7): 534‒539 https://doi.org/10.1007/s13238-020-00732-8

References

[1]
Chaible LM, Corat MA, Abdelhay E, Dagli ML (2010) Genetically modified animals for use in research and biotechnology. Genet Mol Res 9:1469–1482
CrossRef Google scholar
[2]
Chan AW (2013) Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 54:211–223
CrossRef Google scholar
[3]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
CrossRef Google scholar
[4]
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538:217–227
CrossRef Google scholar
[5]
Dhanjal JK, Radhakrishnan N, Sundar D (2017) Identifying synthetic lethal targets using CRISPR/Cas9 system. Methods 131:66–73
CrossRef Google scholar
[6]
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
CrossRef Google scholar
[7]
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498
CrossRef Google scholar
[8]
Gao H,Wu Y, Sun Y, Yang Y,Zhou G, Rao Y (2019) Design, synthesis, and evaluation of highly potentFAK-targetingPROTACs. ACSMed Chem Lett.https://doi.org/10.1021/acsmedchemlett.1029b00372
CrossRef Google scholar
[9]
Gungor-Ordueri NE, Mruk DD, Wan HT, Wong EW, Celik-Ozenci C, Lie PP, Cheng CY (2014) New insights into FAK function and regulation during spermatogenesis. Histol Histopathol 29:977–989
[10]
Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225
CrossRef Google scholar
[11]
Raina K, Crews CM (2010) Chemical inducers of targeted protein degradation. J Biol Chem 285:11057–11060
CrossRef Google scholar
[12]
Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944
CrossRef Google scholar
[13]
Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–1070
CrossRef Google scholar
[14]
Siu ER, Wong EW, Mruk DD, Porto CS, Cheng CY (2009) Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 106:9298–9303
CrossRef Google scholar
[15]
Zheng C,Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL (1998) Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 273:2384–2389
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(1629 KB)

Accesses

Citations

Detail

Sections
Recommended

/