FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice

Hongying Gao , Chunwei Zheng , Jian Du , Yue Wu , Yonghui Sun , Chunsheng Han , Kehkooi Kee , Yu Rao

Protein Cell ›› 2020, Vol. 11 ›› Issue (7) : 534 -539.

PDF (1629KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (7) : 534 -539. DOI: 10.1007/s13238-020-00732-8
LETTER
LETTER

FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice

Author information +
History +
PDF (1629KB)

Cite this article

Download citation ▾
Hongying Gao, Chunwei Zheng, Jian Du, Yue Wu, Yonghui Sun, Chunsheng Han, Kehkooi Kee, Yu Rao. FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice. Protein Cell, 2020, 11(7): 534-539 DOI:10.1007/s13238-020-00732-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chaible LM, Corat MA, Abdelhay E, Dagli ML (2010) Genetically modified animals for use in research and biotechnology. Genet Mol Res 9:1469–1482

[2]

Chan AW (2013) Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 54:211–223

[3]

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

[4]

Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538:217–227

[5]

Dhanjal JK, Radhakrishnan N, Sundar D (2017) Identifying synthetic lethal targets using CRISPR/Cas9 system. Methods 131:66–73

[6]

Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

[7]

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

[8]

Gao H,Wu Y, Sun Y, Yang Y,Zhou G, Rao Y (2019) Design, synthesis, and evaluation of highly potentFAK-targetingPROTACs. ACSMed Chem Lett.

[9]

Gungor-Ordueri NE, Mruk DD, Wan HT, Wong EW, Celik-Ozenci C, Lie PP, Cheng CY (2014) New insights into FAK function and regulation during spermatogenesis. Histol Histopathol 29:977–989

[10]

Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225

[11]

Raina K, Crews CM (2010) Chemical inducers of targeted protein degradation. J Biol Chem 285:11057–11060

[12]

Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944

[13]

Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–1070

[14]

Siu ER, Wong EW, Mruk DD, Porto CS, Cheng CY (2009) Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 106:9298–9303

[15]

Zheng C,Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL (1998) Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 273:2384–2389

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (1629KB)

Supplementary files

PAC-0534-20115-RY_suppl_1

1016

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/