HIGHLIGHT

SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery

  • Luyang Sun ,
  • Weiwei Dang
Expand
  • Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA

Published date: 15 Jul 2020

Copyright

2020 The Author(s)

Cite this article

Luyang Sun , Weiwei Dang . SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery[J]. Protein & Cell, 2020 , 11(7) : 469 -471 . DOI: 10.1007/s13238-020-00735-5

1
Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118

DOI

2
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yap Y, Zhang W, Song M (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 9:652

DOI

3
Blank MF, Grummt I (2017) The seven faces of SIRT7. Transcription 8:67–74

DOI

4
Chandra T, Kirschner K (2016) Chromosome organisation during ageing and senescence. Curr Opin Cell Biol 40:161–167

DOI

5
de Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78

DOI

6
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080

DOI

7
Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A (2016) Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet Disord 17:230

DOI

8
Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271–286

DOI

9
Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V (2009) Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci 122:489–498

DOI

10
Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

DOI

11
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

DOI

12
Lee N, Kim DK, Kim ES, Park SJ, Kwon JH, Shin J, Park SM, Moon YH, Wang HJ, Gho YS (2014) Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics 14:1610–1622

DOI

13
Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235

DOI

14
Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D (2015) A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:1374–1377

DOI

15
Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE 8:e54514

DOI

16
Paredes S, Angulo-Ibanez M, Tasselli L, Carlson SM, Zheng W, Li TM, Chua KF (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem 293:11242–11250

DOI

17
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO (2014) A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 20:856–869

DOI

18
Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143:3–14

DOI

19
Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K (2013) SIRT7 represses myc activity to suppress er stress and prevent fatty liver disease. Cell Rep 5:654–665

DOI

20
Simon M, van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, de Cecco M, Leonova KI, Kogan V, Helfand SL (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885

DOI

21
Sun L, Yu R, Dang W (2018) Chromatin architectural changes during cellular senescence and aging. Genes 9:211

DOI

22
Tsai YC, Greco TM, Cristea IM (2014) Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics 13:73–83

DOI

23
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710

DOI

24
Vazquez BN, Thackray JK, Simonet NG, Kane‐Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016) SIRT7 promotes genome integrity and modulates non‐homologous end joining DNA repair. EMBO J 35:1488–1503

DOI

25
Wronska A, Lawniczak A, Wierzbicki PM, Kmiec Z (2016) Agerelated changes in sirtuin 7 expression in calorie-restricted and refed rats. Gerontology 62:304–310

DOI

26
Wu D, Li Y, Zhu KS, Wang H, Zhu W-G (2018) Advances in cellular characterization of the sirtuin isoform, SIRT7. Front Endocrinol 9:652

DOI

Outlines

/