SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery

Luyang Sun, Weiwei Dang

PDF(157 KB)
PDF(157 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (7) : 469-471. DOI: 10.1007/s13238-020-00735-5
HIGHLIGHT
HIGHLIGHT

SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery

Author information +
History +

Cite this article

Download citation ▾
Luyang Sun, Weiwei Dang. SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery. Protein Cell, 2020, 11(7): 469‒471 https://doi.org/10.1007/s13238-020-00735-5

References

[1]
Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118
CrossRef Google scholar
[2]
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yap Y, Zhang W, Song M (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 9:652
CrossRef Google scholar
[3]
Blank MF, Grummt I (2017) The seven faces of SIRT7. Transcription 8:67–74
CrossRef Google scholar
[4]
Chandra T, Kirschner K (2016) Chromosome organisation during ageing and senescence. Curr Opin Cell Biol 40:161–167
CrossRef Google scholar
[5]
de Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
CrossRef Google scholar
[6]
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080
CrossRef Google scholar
[7]
Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A (2016) Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet Disord 17:230
CrossRef Google scholar
[8]
Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271–286
CrossRef Google scholar
[9]
Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V (2009) Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci 122:489–498
CrossRef Google scholar
[10]
Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295
CrossRef Google scholar
[11]
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580
CrossRef Google scholar
[12]
Lee N, Kim DK, Kim ES, Park SJ, Kwon JH, Shin J, Park SM, Moon YH, Wang HJ, Gho YS (2014) Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics 14:1610–1622
CrossRef Google scholar
[13]
Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235
CrossRef Google scholar
[14]
Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D (2015) A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:1374–1377
CrossRef Google scholar
[15]
Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE 8:e54514
CrossRef Google scholar
[16]
Paredes S, Angulo-Ibanez M, Tasselli L, Carlson SM, Zheng W, Li TM, Chua KF (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem 293:11242–11250
CrossRef Google scholar
[17]
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO (2014) A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 20:856–869
CrossRef Google scholar
[18]
Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143:3–14
CrossRef Google scholar
[19]
Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K (2013) SIRT7 represses myc activity to suppress er stress and prevent fatty liver disease. Cell Rep 5:654–665
CrossRef Google scholar
[20]
Simon M, van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, de Cecco M, Leonova KI, Kogan V, Helfand SL (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885
CrossRef Google scholar
[21]
Sun L, Yu R, Dang W (2018) Chromatin architectural changes during cellular senescence and aging. Genes 9:211
CrossRef Google scholar
[22]
Tsai YC, Greco TM, Cristea IM (2014) Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics 13:73–83
CrossRef Google scholar
[23]
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710
CrossRef Google scholar
[24]
Vazquez BN, Thackray JK, Simonet NG, Kane‐Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016) SIRT7 promotes genome integrity and modulates non‐homologous end joining DNA repair. EMBO J 35:1488–1503
CrossRef Google scholar
[25]
Wronska A, Lawniczak A, Wierzbicki PM, Kmiec Z (2016) Agerelated changes in sirtuin 7 expression in calorie-restricted and refed rats. Gerontology 62:304–310
CrossRef Google scholar
[26]
Wu D, Li Y, Zhu KS, Wang H, Zhu W-G (2018) Advances in cellular characterization of the sirtuin isoform, SIRT7. Front Endocrinol 9:652
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(157 KB)

Accesses

Citations

Detail

Sections
Recommended

/