LETTER

In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models

  • Xiaomeng An 1 ,
  • Linlin Li 2 ,
  • Sen Wu , 1
Expand
  • 1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
  • 2. State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratoryof Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China

Published date: 15 Jun 2019

Copyright

2018 The Author(s)

Cite this article

Xiaomeng An , Linlin Li , Sen Wu . In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models[J]. Protein & Cell, 2019 , 10(6) : 450 -454 . DOI: 10.1007/s13238-018-0579-7

1
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5:448–459

DOI

2
Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–U398

DOI

3
Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988

DOI

4
Kleinjan DA, Wardrope C, Nga Sou S, Rosser SJ (2017) Drugtunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat Commun 8:1191

DOI

5
Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

DOI

6
Liu KI, Ramli MNB, Woo CWA, Wang YM, Zhao TY, Zhang XJ, Yim GRD, Chong BY, Gowher A, Chua MZH (2016) A chemicalinducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol 12:980–987

DOI

7
Lu J, Zhao C, Zhao Y, Zhang J, Zhang Y, Chen L, Han Q, Ying Y, Peng S, Ai R (2018) Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res 46:e25

DOI

8
Maji B, Moore CL, Zetsche B, Volz SE, Zhang F, Shoulders MD, Choudhary A (2017) Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 13:9–11

DOI

9
Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

DOI

10
Sando R, Baumgaertel K, Pieraut S, Torabi-Rander N, Wandless TJ, Mayford M, Maximov A (2013) Inducible control of gene expression with destabilized Cre. Nat Methods 10:1085–1088

DOI

11
Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R (2017) Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8:1–10

DOI

12
Xu CL, Qi XL, Du XG, Zou HY, Gao F, Feng T, Lu HX, Li SL, An XM, Zhang LJ (2017) piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci USA 114:722–727

DOI

13
Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142

DOI

Outlines

/