In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models

Xiaomeng An, Linlin Li, Sen Wu

PDF(1119 KB)
PDF(1119 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (6) : 450-454. DOI: 10.1007/s13238-018-0579-7
LETTER
LETTER

In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models

Author information +
History +

Cite this article

Download citation ▾
Xiaomeng An, Linlin Li, Sen Wu. In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models. Protein Cell, 2019, 10(6): 450‒454 https://doi.org/10.1007/s13238-018-0579-7

References

[1]
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5:448–459
CrossRef Google scholar
[2]
Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–U398
CrossRef Google scholar
[3]
Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988
CrossRef Google scholar
[4]
Kleinjan DA, Wardrope C, Nga Sou S, Rosser SJ (2017) Drugtunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat Commun 8:1191
CrossRef Google scholar
[5]
Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476
CrossRef Google scholar
[6]
Liu KI, Ramli MNB, Woo CWA, Wang YM, Zhao TY, Zhang XJ, Yim GRD, Chong BY, Gowher A, Chua MZH (2016) A chemicalinducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol 12:980–987
CrossRef Google scholar
[7]
Lu J, Zhao C, Zhao Y, Zhang J, Zhang Y, Chen L, Han Q, Ying Y, Peng S, Ai R (2018) Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res 46:e25
CrossRef Google scholar
[8]
Maji B, Moore CL, Zetsche B, Volz SE, Zhang F, Shoulders MD, Choudhary A (2017) Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 13:9–11
CrossRef Google scholar
[9]
Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef Google scholar
[10]
Sando R, Baumgaertel K, Pieraut S, Torabi-Rander N, Wandless TJ, Mayford M, Maximov A (2013) Inducible control of gene expression with destabilized Cre. Nat Methods 10:1085–1088
CrossRef Google scholar
[11]
Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R (2017) Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8:1–10
CrossRef Google scholar
[12]
Xu CL, Qi XL, Du XG, Zou HY, Gao F, Feng T, Lu HX, Li SL, An XM, Zhang LJ (2017) piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci USA 114:722–727
CrossRef Google scholar
[13]
Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s)
AI Summary AI Mindmap
PDF(1119 KB)

Accesses

Citations

Detail

Sections
Recommended

/