LETTER

5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system

  • Wei Mu 1,2 ,
  • Yongping Zhang 3 ,
  • Xutong Xue 4 ,
  • Lei Liu 1,2 ,
  • Xiaofei Wei 5 ,
  • Haoyi Wang , 1
Expand
  • 1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Department of Hematology, Aerospace Center Hospital, Aerospace Clinical Medical College, Peking University, Beijing 100049, China
  • 4. Hebei University, Baoding 071002, China
  • 5. Beijing Cord Blood Bank, Beijing 100044, China

Published date: 21 Feb 2019

Copyright

2018 The Author(s) 2018

Cite this article

Wei Mu , Yongping Zhang , Xutong Xue , Lei Liu , Xiaofei Wei , Haoyi Wang . 5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system[J]. Protein & Cell, 2019 , 10(3) : 223 -228 . DOI: 10.1007/s13238-018-0552-5

1
Bergman N, Moraes KCM, Anderson JR, Zaric B, Kambach C, Schneider RJ, Wilusz CJ, Wilusz J (2007) Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts . Nat Struct Mol Biol 14:824–831

DOI

2
Chapman EG, Moon SL, Wilusz J, Kieft JS (2014) RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA . eLife 3:e01892

DOI

3
Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling . Cell Res 26:254

DOI

4
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems . Science 339:819–823

DOI

5
Deleavey Glen F, Damha Masad J (2012) Designing chemically modified oligonucleotides for targeted gene silencing . Chem Biol 19:937–954

DOI

6
Eckstein F (2014) Phosphorothioates, essential components of therapeutic oligonucleotides . Nucleic Acid Ther 24:374–387

DOI

7
Gilbert Luke A, Larson Matthew H, Morsut L, Liu Z, Brar Gloria A, Torres Sandra E, Stern-Ginossar N, Brandman O, Whitehead Evan H, Doudna Jennifer A (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell 154:442–451

DOI

8
Gilbert Luke A, Horlbeck Max A, Adamson B, Villalta Jacqueline E, Chen Y, Whitehead Evan H, Guimaraes C, Panning B, Ploegh Hidde L, Bassik Michael C (2014) Genome-scale CRISPRmediated control of gene repression and activation . Cell 159:647–661

DOI

9
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells . Nat Biotechnol 33:985

DOI

10
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity . Science 337:816–821

DOI

11
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex . Nature 517:583

DOI

12
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9 . Science 339:823–826

DOI

13
Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9–guided genome editing in human cells . Proc Natl Acad Sci USA 112: E7110–E7117

DOI

14
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-display . Nat Methods 12:664–670

DOI

15
Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems . Curr Opin Microbiol 14:321–327

DOI

Outlines

/