[1] Aggarwal, B.B., Vijayalekshmi, R.V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15, 425–430 .19147746
[2] Arpino, G., Wiechmann, L., Osborne, C.K., and Schiff, R. (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29, 217–233 .18216219
[3] Baselga, J., and Norton, L. (2002). Focus on breast cancer. Cancer Cell 1, 319–322 .12086846
[4] Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35, 450–458 .20399103
[5] Chen, G., and Goeddel, D.V. (2002). TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 .12040173
[6] Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483–496 .20434986
[7] Donaldson, K.M., Yin, H., Gekakis, N., Supek, F., and Joazeiro, C.A. (2003). Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr Biol 13, 258–262 .12573224
[8] Gao, Y.F., Li, T., Chang, Y., Wang, Y.B., Zhang, W.N., Li, W.H., He, K., Mu, R., Zhen, C., Man, J.H., . (2011). Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13, 924–933 .
[9] Gown, A.M. (2008). Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21, S8–S15 .18437174
[10] Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F., and Karin, M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 .15294155
[11] Grivennikov, S.I., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883–899 .20303878
[12] H?cker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.17047224
[13] Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70 .10647931
[14] Hsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 .8612133
[15] Huang, Q., Yang, J., Lin, Y., Walker, C., Cheng, J., Liu, Z.G., and Su, B. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5, 98–103 .14661019
[16] Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 .16724054
[17] Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621–663 .10837071
[18] Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749–759 .16175180
[19] Li, H.Y., Liu, H., Wang, C.H., Zhang, J.Y., Man, J.H., Gao, Y.F., Zhang, P.J., Li, W.H., Zhao, J., Pan, X., (2008). Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1. Nat Immunol 9, 533–541 .18362886
[20] Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 .15989949
[21] Maniatis, T. (1999). A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13, 505–510 .10072378
[22] Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436–444 .18650914
[23] Minton, K. (2008). Stopping before the damage is done. Nat Rev Immunol 8, 372–379 .
[24] Morgan, D.O. (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol 1, E47–E53 .10559897
[25] Musgrove, E.A., and Sutherland, R.L. (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9, 631–643 .19701242
[26] Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K. (1998). Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A 95, 3537–3542 .9520401
[27] Nigg, E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2, 21–32 .11413462
[28] Normanno, N., Di Maio, M., De Maio, E., De Luca, A., de Matteis, A., Giordano, A., and Perrone, F., and the NCI-Naple Breast Cancer Group. (2005). Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12, 721–747 .16322319
[29] Page, A.M., and Hieter, P. (1999). The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68, 583–609 .10872461
[30] Pan, X., Zhou, T., Tai, Y.H., Wang, C., Zhao, J., Cao, Y., Chen, Y., Zhang, P.J., Yu, M., Zhen, C., (2011). Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat Med 17, 708–714 .21572428
[31] Peters, J.M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644–656 .16896351
[32] Pines, J., and Rieder, C.L. (2001). Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3, E3–E6 .11146636
[33] Renner, F., and Schmitz, M.L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem Sci 34, 128–135 .19233657
[34] Schvartzman, J.M., Sotillo, R., and Benezra, R. (2010). Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10, 102–115 .20094045
[35] Shih, S.C., Prag, G., Francis, S.A., Sutanto, M.A., Hurley, J.H., and Hicke, L. (2003). A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J 22, 1273–1281 .12628920
[36] Sullivan, M., and Morgan, D.O. (2007). Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8, 894–903 .17912263
[37] Visintin, R., Prinz, S., and Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 .9334304
[38] Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ 10, 45–65 .12655295
[39] Weaver, B.A., and Cleveland, D.W. (2008). The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell 14, 431–433 .19061834
[40] Wu, S., Rhee, K.J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H.R., Huso, D.L., Brancati, F.L., Wick, E., McAllister, F., (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, 1016–1022 .19701202
[41] Yamashita, H. (2008). Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol 13, 380–383 .18946747
[42] Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Chen, Z., Liu, Z., and Su, B. (2001). The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2, 620–624 .11429546
[43] Zhang, P.J., Zhao, J., Li, H.Y., Man, J.H., He, K., Zhou, T., Pan, X., Li, A.L., Gong, W.L., Jin, B.F., (2007). CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome. EMBO J 26, 1831–1842 .17347654