CUEDC2: an emerging key player in inflammation and tumorigenesis

Jianghong Man, Xuemin Zhang()

PDF(117 KB)
PDF(117 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (9) : 699-703. DOI: 10.1007/s13238-011-1089-z
MINI-REVIEW
MINI-REVIEW

CUEDC2: an emerging key player in inflammation and tumorigenesis

  • Jianghong Man, Xuemin Zhang()
Author information +
History +

Abstract

CUE domain-containing 2 (CUEDC2) is a protein involved in the regulation of the cell cycle, inflammation, and tumorigenesis and is highly expressed in many types of tumors. CUEDC2 is phosphorylated by Cdk1 during mitosis and promotes the release of anaphase-promoting complex or cyclosome (APC/C) from checkpoint inhibition. CUEDC2 is also known to interact with IkB kinase α (IKKα) and IKKβ and has an inhibitory role in the activation of transcription factor nuclear factor-κB. Moreover, CUEDC2 plays an important role in downregulating the expression of hormone receptors estrogen receptor-α and progesterone receptor, thereby impairing the responsiveness of breast cancer to endocrine therapies. In this review, current knowledge on the multi-functions of CUEDC2 in normal processes and tumorigenesis are discussed and summarized.

Keywords

CUEDC2 / inflammation / cell cycle / nuclear factor-κB / tumorigenesis

Cite this article

Download citation ▾
Jianghong Man, Xuemin Zhang. CUEDC2: an emerging key player in inflammation and tumorigenesis. Prot Cell, 2011, 2(9): 699‒703 https://doi.org/10.1007/s13238-011-1089-z

References

[1] Aggarwal, B.B., Vijayalekshmi, R.V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15, 425–430 .19147746
[2] Arpino, G., Wiechmann, L., Osborne, C.K., and Schiff, R. (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29, 217–233 .18216219
[3] Baselga, J., and Norton, L. (2002). Focus on breast cancer. Cancer Cell 1, 319–322 .12086846
[4] Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35, 450–458 .20399103
[5] Chen, G., and Goeddel, D.V. (2002). TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 .12040173
[6] Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483–496 .20434986
[7] Donaldson, K.M., Yin, H., Gekakis, N., Supek, F., and Joazeiro, C.A. (2003). Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr Biol 13, 258–262 .12573224
[8] Gao, Y.F., Li, T., Chang, Y., Wang, Y.B., Zhang, W.N., Li, W.H., He, K., Mu, R., Zhen, C., Man, J.H., . (2011). Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13, 924–933 .
[9] Gown, A.M. (2008). Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21, S8–S15 .18437174
[10] Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F., and Karin, M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 .15294155
[11] Grivennikov, S.I., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883–899 .20303878
[12] H?cker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.17047224
[13] Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70 .10647931
[14] Hsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 .8612133
[15] Huang, Q., Yang, J., Lin, Y., Walker, C., Cheng, J., Liu, Z.G., and Su, B. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5, 98–103 .14661019
[16] Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 .16724054
[17] Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621–663 .10837071
[18] Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749–759 .16175180
[19] Li, H.Y., Liu, H., Wang, C.H., Zhang, J.Y., Man, J.H., Gao, Y.F., Zhang, P.J., Li, W.H., Zhao, J., Pan, X., (2008). Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1. Nat Immunol 9, 533–541 .18362886
[20] Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 .15989949
[21] Maniatis, T. (1999). A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13, 505–510 .10072378
[22] Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436–444 .18650914
[23] Minton, K. (2008). Stopping before the damage is done. Nat Rev Immunol 8, 372–379 .
[24] Morgan, D.O. (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol 1, E47–E53 .10559897
[25] Musgrove, E.A., and Sutherland, R.L. (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9, 631–643 .19701242
[26] Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K. (1998). Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A 95, 3537–3542 .9520401
[27] Nigg, E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2, 21–32 .11413462
[28] Normanno, N., Di Maio, M., De Maio, E., De Luca, A., de Matteis, A., Giordano, A., and Perrone, F., and the NCI-Naple Breast Cancer Group. (2005). Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12, 721–747 .16322319
[29] Page, A.M., and Hieter, P. (1999). The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68, 583–609 .10872461
[30] Pan, X., Zhou, T., Tai, Y.H., Wang, C., Zhao, J., Cao, Y., Chen, Y., Zhang, P.J., Yu, M., Zhen, C., (2011). Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat Med 17, 708–714 .21572428
[31] Peters, J.M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644–656 .16896351
[32] Pines, J., and Rieder, C.L. (2001). Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3, E3–E6 .11146636
[33] Renner, F., and Schmitz, M.L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem Sci 34, 128–135 .19233657
[34] Schvartzman, J.M., Sotillo, R., and Benezra, R. (2010). Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10, 102–115 .20094045
[35] Shih, S.C., Prag, G., Francis, S.A., Sutanto, M.A., Hurley, J.H., and Hicke, L. (2003). A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J 22, 1273–1281 .12628920
[36] Sullivan, M., and Morgan, D.O. (2007). Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8, 894–903 .17912263
[37] Visintin, R., Prinz, S., and Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 .9334304
[38] Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ 10, 45–65 .12655295
[39] Weaver, B.A., and Cleveland, D.W. (2008). The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell 14, 431–433 .19061834
[40] Wu, S., Rhee, K.J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H.R., Huso, D.L., Brancati, F.L., Wick, E., McAllister, F., (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, 1016–1022 .19701202
[41] Yamashita, H. (2008). Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol 13, 380–383 .18946747
[42] Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Chen, Z., Liu, Z., and Su, B. (2001). The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2, 620–624 .11429546
[43] Zhang, P.J., Zhao, J., Li, H.Y., Man, J.H., He, K., Zhou, T., Pan, X., Li, A.L., Gong, W.L., Jin, B.F., (2007). CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome. EMBO J 26, 1831–1842 .17347654
AI Summary AI Mindmap
PDF(117 KB)

Accesses

Citations

Detail

Sections
Recommended

/