[1] Abdel-Hamid, A.M., and Cronan, J.E. (2007). In vivo resolution of conflicting in vitro results: synthesis of biotin from dethiobiotin does not require pyridoxal phosphate. Chem Biol 14, 1215-1220 18022560.
[2] Ahmad, S. (2011). Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2011, 81494321234341.
[3] Arabolaza, A., Shillito, M.E., Lin, T.W., Diacovich, L., Melgar, M., Pham, H., Amick, D., Gramajo, H., and Tsai, S.C. (2010). Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor. Biochemistry 49, 7367-7376 20690600.
[4] Baek, S.H., Li, A.H., and Sassetti, C.M. (2011). Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9, e100106521629732.
[5] Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T., and Drennan, C.L. (2004). Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76-79 14704425.
[6] Chan, D.I., and Vogel, H.J. (2010). Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430, 1-19 20662770.
[7] Cronan, J.E., and Lin, S. (2011). Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr Opin Chem Biol 15, 407-413 21435937.
[8] Dey, S., Lane, J.M., Lee, R.E., Rubin, E.J., and Sacchettini, J.C. (2010). Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 49, 6746-6760 20565114.
[9] Dye, C., and Williams, B.G. (2010). The population dynamics and control of tuberculosis. Science 328, 856-861 20466923.
[10] Eisenreich, W., Dandekar, T., Heesemann, J., and Goebel, W. (2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8, 401-412 20453875.
[11] Gago, G., Diacovich, L., Arabolaza, A., Tsai, S.C., and Gramajo, H. (2011). Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35 , 475-497
[12] Hebbeln, P., Rodionov, D.A., Alfandega, A., and Eitinger, T. (2007). Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci U S A 104, 2909-2914 17301237.
[13] Joshi, S.M., Pandey, A.K., Capite, N., Fortune, S.M., Rubin, E.J., and Sassetti, C.M. (2006). Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103, 11760-11765 16868085.
[14] Keer, J., Smeulders, M.J., Gray, K.M., and Williams, H.D. (2000). Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Microbiology 146, 2209-2217 10974108.
[15] Kitahara, T., Hotta, K., Yoshida, M., and Okami, Y. (1975). Biological studies of amiclenomycin. J Antibiot (Tokyo) 28, 215-221 805118.
[16] Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The challenge of new drug discovery for tuberculosis. Nature 469, 483-490 21270886.
[17] Kwan, C.K., and Ernst, J.D. (2011). HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24, 351-376 21482729.
[18] Lawn, S.D., and Zumla, A.I. (2011). Tuberculosis. Lancet 378, 57-72 21420161.
[19] Lin, S., Hanson, R.E., and Cronan, J.E. (2010). Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6, 682-688 20693992.
[20] Lu, H., and Tonge, P.J. (2008). Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41, 11-20 18193820.
[21] Mann, S., Colliandre, L., Labesse, G., and Ploux, O. (2009). Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Biochimie 91, 826-834 19345718.
[22] Mann, S., Marquet, A., and Ploux, O. (2005). Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Biochem Soc Trans 33, 802-805 16042602.
[23] Minnikin, D.E., Kremer, L., Dover, L.G., and Besra, G.S. (2002). The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9, 545-553 12031661.
[24] Mock, D.M., and Malik, M.I. (1992). Distribution of biotin in human plasma: most of the biotin is not bound to protein. Am J Clin Nutr 56, 427-432 1636621.
[25] Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C., and Engelhardt, H. (2010). Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18, 109-116 20060722.
[26] Ogata, K., Izumi, Y., and Tani, Y. (1973). The controlling action of actithiazic acid on the biosynthesis of biotin-vitamers by various microorganisms Agr. Biol Chem 37, 1079-1085 .
[27] Okami, Y., Kitahara, T., Hamada, M., Naganawa, H., and Kondo, S. (1974). Studies on a new amino acid antibiotic, amiclenomycin. J Antibiot (Tokyo) 27, 656-664 4436150.
[28] Parsons, J.B., and Rock, C.O. (2011). Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol Aug20. [Epub ahead of print].
[29] Rengarajan, J., Bloom, B.R., and Rubin, E.J. (2005). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102, 8327-8332 15928073.
[30] Rodionov, D.A., Hebbeln, P., Eudes, A., ter Beek, J., Rodionova, I.A., Erkens, G.B., Slotboom, D.J., Gelfand, M.S., Osterman, A.L., Hanson, A.D., (2009). A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191, 42-51 18931129.
[31] Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. (2002). Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. Genome Res 12, 1507-1516 12368242.
[32] Russell, D.G. (2001). Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2, 569-577 11483990.
[33] Russell, D.G., Barry, C.E. 3rd, and Flynn, J.L. (2010). Tuberculosis: what we don’t know can, and does, hurt us. Science 328, 852-856 20466922.
[34] Said, H.M. (2009). Cell and molecular aspects of human intestinal biotin absorption. J Nutr 139, 158-162 19056639.
[35] Sandmark, J., Mann, S., Marquet, A., and Schneider, G. (2002). Structural basis for the inhibition of the biosynthesis of biotin by the antibiotic amiclenomycin. J Biol Chem 277, 43352-43358 12218056.
[36] Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2001). Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98, 12712-12717 11606763.
[37] Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77-84 12657046.
[38] Sassetti, C.M., and Rubin, E.J. (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994 14569030.
[39] Seki, M. (2006). Biological significance and development of practical synthesis of biotin. Med Res Rev 26, 434-482 16676358.
[40] Takayama, K., Wang, C., and Besra, G.S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18, 81-101 15653820.
[41] Wright, H.T., and Reynolds, K.A. (2007). Antibacterial targets in fatty acid biosynthesis. Curr Opin Microbiol 10, 447-453 17707686.
[42] Yu, J., Niu, C., Wang, D., Li, M., Teo, W., Sun, G., Wang, J., Liu, J., and Gao, Q. (2011). MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect 13, 33-41 20974274.