Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention
Wanisa Salaemae, Al Azhar, Grant W. Booker, Steven W. Polyak()
Author information+
School of Molecular and Biomedical Sciences, University of Adelaide, South Australia 5005, Australia
Corresponding author: W. Polyak Steven,Email:steven.polyak@adelaide.edu.au
Show less
History+
Published
01 Sep 2011
Issue Date
01 Sep 2011
Abstract
Biotin is an important micronutrient that serves as an essential enzyme cofactor. Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources. Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis. Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria. Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in bacilli growth, infection and survival during the latency phase. These studies help to establish the biotin biosynthetic pathway as a potential drug target for new anti-tuberculosis agents.
Wanisa Salaemae, Al Azhar, Grant W. Booker, Steven W. Polyak.
Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention. Prot Cell, 2011, 2(9): 691‒695 https://doi.org/10.1007/s13238-011-1100-8
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] Abdel-Hamid, A.M., and Cronan, J.E. (2007). In vivo resolution of conflicting in vitro results: synthesis of biotin from dethiobiotin does not require pyridoxal phosphate. Chem Biol 14, 1215-1220 18022560. [2] Ahmad, S. (2011). Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2011, 81494321234341. [3] Arabolaza, A., Shillito, M.E., Lin, T.W., Diacovich, L., Melgar, M., Pham, H., Amick, D., Gramajo, H., and Tsai, S.C. (2010). Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor. Biochemistry 49, 7367-7376 20690600. [4] Baek, S.H., Li, A.H., and Sassetti, C.M. (2011). Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9, e100106521629732. [5] Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T., and Drennan, C.L. (2004). Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76-79 14704425. [6] Chan, D.I., and Vogel, H.J. (2010). Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430, 1-19 20662770. [7] Cronan, J.E., and Lin, S. (2011). Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr Opin Chem Biol 15, 407-413 21435937. [8] Dey, S., Lane, J.M., Lee, R.E., Rubin, E.J., and Sacchettini, J.C. (2010). Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 49, 6746-6760 20565114. [9] Dye, C., and Williams, B.G. (2010). The population dynamics and control of tuberculosis. Science 328, 856-861 20466923. [10] Eisenreich, W., Dandekar, T., Heesemann, J., and Goebel, W. (2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8, 401-412 20453875. [11] Gago, G., Diacovich, L., Arabolaza, A., Tsai, S.C., and Gramajo, H. (2011). Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35 , 475-497 [12] Hebbeln, P., Rodionov, D.A., Alfandega, A., and Eitinger, T. (2007). Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci U S A 104, 2909-2914 17301237. [13] Joshi, S.M., Pandey, A.K., Capite, N., Fortune, S.M., Rubin, E.J., and Sassetti, C.M. (2006). Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103, 11760-11765 16868085. [14] Keer, J., Smeulders, M.J., Gray, K.M., and Williams, H.D. (2000). Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Microbiology 146, 2209-2217 10974108. [15] Kitahara, T., Hotta, K., Yoshida, M., and Okami, Y. (1975). Biological studies of amiclenomycin. J Antibiot (Tokyo) 28, 215-221 805118. [16] Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The challenge of new drug discovery for tuberculosis. Nature 469, 483-490 21270886. [17] Kwan, C.K., and Ernst, J.D. (2011). HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24, 351-376 21482729. [18] Lawn, S.D., and Zumla, A.I. (2011). Tuberculosis. Lancet 378, 57-72 21420161. [19] Lin, S., Hanson, R.E., and Cronan, J.E. (2010). Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6, 682-688 20693992. [20] Lu, H., and Tonge, P.J. (2008). Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41, 11-20 18193820. [21] Mann, S., Colliandre, L., Labesse, G., and Ploux, O. (2009). Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Biochimie 91, 826-834 19345718. [22] Mann, S., Marquet, A., and Ploux, O. (2005). Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Biochem Soc Trans 33, 802-805 16042602. [23] Minnikin, D.E., Kremer, L., Dover, L.G., and Besra, G.S. (2002). The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9, 545-553 12031661. [24] Mock, D.M., and Malik, M.I. (1992). Distribution of biotin in human plasma: most of the biotin is not bound to protein. Am J Clin Nutr 56, 427-432 1636621. [25] Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C., and Engelhardt, H. (2010). Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18, 109-116 20060722. [26] Ogata, K., Izumi, Y., and Tani, Y. (1973). The controlling action of actithiazic acid on the biosynthesis of biotin-vitamers by various microorganisms Agr. Biol Chem 37, 1079-1085 . [27] Okami, Y., Kitahara, T., Hamada, M., Naganawa, H., and Kondo, S. (1974). Studies on a new amino acid antibiotic, amiclenomycin. J Antibiot (Tokyo) 27, 656-664 4436150. [28] Parsons, J.B., and Rock, C.O. (2011). Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin MicrobiolAug20. [Epub ahead of print]. [29] Rengarajan, J., Bloom, B.R., and Rubin, E.J. (2005). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102, 8327-8332 15928073. [30] Rodionov, D.A., Hebbeln, P., Eudes, A., ter Beek, J., Rodionova, I.A., Erkens, G.B., Slotboom, D.J., Gelfand, M.S., Osterman, A.L., Hanson, A.D., (2009). A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191, 42-51 18931129. [31] Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. (2002). Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. Genome Res 12, 1507-1516 12368242. [32] Russell, D.G. (2001). Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2, 569-577 11483990. [33] Russell, D.G., Barry, C.E. 3rd, and Flynn, J.L. (2010). Tuberculosis: what we don’t know can, and does, hurt us. Science 328, 852-856 20466922. [34] Said, H.M. (2009). Cell and molecular aspects of human intestinal biotin absorption. J Nutr 139, 158-162 19056639. [35] Sandmark, J., Mann, S., Marquet, A., and Schneider, G. (2002). Structural basis for the inhibition of the biosynthesis of biotin by the antibiotic amiclenomycin. J Biol Chem 277, 43352-43358 12218056. [36] Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2001). Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98, 12712-12717 11606763. [37] Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77-84 12657046. [38] Sassetti, C.M., and Rubin, E.J. (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994 14569030. [39] Seki, M. (2006). Biological significance and development of practical synthesis of biotin. Med Res Rev 26, 434-482 16676358. [40] Takayama, K., Wang, C., and Besra, G.S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18, 81-101 15653820. [41] Wright, H.T., and Reynolds, K.A. (2007). Antibacterial targets in fatty acid biosynthesis. Curr Opin Microbiol 10, 447-453 17707686. [42] Yu, J., Niu, C., Wang, D., Li, M., Teo, W., Sun, G., Wang, J., Liu, J., and Gao, Q. (2011). MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect 13, 33-41 20974274.
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.