[1] Baas, B.J., Denisov, I.G., and Sligar, S.G. (2004). Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430, 218–228 .15369821
[2] Bell, S.G., Dale, A., Rees, N.H., and Wong, L.L. (2010a). A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86, 163–175 .19779713
[3] Bell, S.G., Hoskins, N., Whitehouse, C.J.C., and Wong, L.-L. (2007). Design and Engineering of Cytochrome P450 Systems. Metal Ions Life Sci 3, 437–476 .
[4] Bell, S.G., Tan, A.B., Johnson, E.O., and Wong, L.L. (2010b). Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst 6, 206–214 .20024082
[5] Bell, S.G., and Wong, L.L. (2007). P450 enzymes from the bacterium Novosphingobium aromaticivorans. Biochem Biophys Res Commun 360, 666–672 .17618912
[6] Bell, S.G., Xu, F., Johnson, E.O., Forward, I.M., Bartlam, M., Rao, Z., and Wong, L.L. (2010c). Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. J Biol Inorg Chem 15, 315–328 .19904564
[7] Brewer, C.B., and Peterson, J.A. (1988). Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin. J Biol Chem 263, 791–798 .2826462
[8] Budde, M., Maurer, S.C., Schmid, R.D., and Urlacher, V.B. (2004). Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl Microbiol Biotechnol 66, 180–186 .15375636
[9] Carmichael, A.B., and Wong, L.L. (2001). Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268, 3117–3125 .11358532
[10] Chowdhary, P.K., Alemseghed, M., and Haines, D.C. (2007). Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys 468, 32–43 .17945181
[11] Cryle, M.J., Espinoza, R.D., Smith, S.J., Matovic, N.J., and De Voss, J.J. (2006). Are branched chain fatty acids the natural substrates for P450(BM3)? Chem Commun 2353–2355 .16733577
[12] Davydov, D.R., Botchkareva, A.E., Kumar, S., He, Y.Q., and Halpert, J.R. (2004). An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF. Biochemistry 43, 6475–6485 .15157081
[13] Davydov, D.R., and Halpert, J.R. (2008). Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 4, 1523–1535 .19040328
[14] Denisov, I.G., Baas, B.J., Grinkova, Y.V., and Sligar, S.G. (2007). Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem 282, 7066–7076 .17213193
[15] Denisov, I.G., Frank, D.J., and Sligar, S.G. (2009). Cooperative properties of cytochromes P450. Pharmacol Ther 124, 151–167 .19555717
[16] Dietrich, M., Eiben, S., Asta, C., Do, T.A., Pleiss, J., and Urlacher, V.B. (2008). Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 79, 931–940 .18483737
[17] Girvan, H.M., Dunford, A.J., Neeli, R., Ekanem, I.S., Waltham, T.N., Joyce, M.G., Leys, D., Curtis, R.A., Williams, P., Fisher, K., (2011). Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer. Arch Biochem Biophys 507, 75–85 .20868649
[18] Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14, 611–650 .11409933
[19] Gustafsson, M.C., Roitel, O., Marshall, K.R., Noble, M.A., Chapman, S.K., Pessegueiro, A., Fulco, A.J., Cheesman, M.R., von Wachenfeldt, C., and Munro, A.W. (2004). Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 43, 5474–5487 .15122913
[20] Haines, D.C., Chen, B., Tomchick, D.R., Bondlela, M., Hegde, A., Machius, M., and Peterson, J.A. (2008). Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Biochemistry 47, 3662–3670 .18298086
[21] Haines, D.C., Sevrioukova, I.F., and Peterson, J.A. (2000). The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Biochemistry 39, 9419–9429 .10924137
[22] Haines, D.C., Tomchick, D.R., Machius, M., and Peterson, J.A. (2001). Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40, 13456–13465 .11695892
[23] Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A., and Deisenhofer, J. (1995). Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3, 41–62 .7743131
[24] Hegde, A., Haines, D.C., Bondlela, M., Chen, B., Schaffer, N., Tomchick, D.R., Machius, M., Nguyen, H., Chowdhary, P.K., Stewart, L., (2007). Interactions of substrates at the surface of P450s can greatly enhance substrate potency. Biochemistry 46, 14010–14017 .18004886
[25] Huang, W.C., Westlake, A.C., Maréchal, J.D., Joyce, M.G., Moody, P.C., and Roberts, G.C. (2007). Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. J Mol Biol 373, 633–651 .17868686
[26] Ingelman-Sundberg, M., and Johansson, I. (1980). Catalytic properties of purified forms of rabbit liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles. Biochemistry 19, 4004–4011 .6773560
[27] Jovanovic, T., Farid, R., Friesner, R.A., and McDermott, A.E. (2005). Thermal equilibrium of high- and low-spin forms of cytochrome P450 BM-3: repositioning of the substrate? J Am Chem Soc 127, 13548–13552 .16190718
[28] Joyce, M.G., Girvan, H.M., Munro, A.W., and Leys, D. (2004). A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme. J Biol Chem 279, 23287–23293 .15020590
[29] Kitazume, T., Haines, D.C., Estabrook, R.W., Chen, B., and Peterson, J.A. (2007). Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46, 11892–11901 .17902705
[30] Lentz, O., Urlacher, V., and Schmid, R.D. (2004). Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J Biotechnol 108, 41–49 .14741768
[31] Li, H., and Poulos, T.L. (1997). The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4, 140–146 .9033595
[32] Li, Q.S., Ogawa, J., Schmid, R.D., and Shimizu, S. (2005). Indole hydroxylation by bacterial cytochrome P450BM-3 and modulation of activity by cumene hydroperoxide. Biosci Biotechnol Biochem 69, 293–300 .15725653
[33] Malik, W.U., and Jain, A.K. (1967). Electrometric determination of critical micelle concentrations of soap solutions. J Electroanal Chem 14, 37–41 .
[34] Maurer, S.C., Kuhnel, K., Kaysser, L.A., Eiben, S., Schmid, R.D., and Urlacher, V.B. (2005). Catalytic hydroxylation in biphasic systems using CYP102A1 mutants. Adv Synth Catal 347, 1090–1098 .
[35] Maves, S.A., Yeom, H., McLean, M.A., and Sligar, S.G. (1997). Decreased substrate affinity upon alteration of the substrate-docking region in cytochrome P450BM-3. FEBS Lett 414, 213–218 .9315688
[36] Mizushima, S., Ishida, M., and Kitahara, K. (1966). Chemical composition of the protoplast membrane of Bacillus megaterium. J Biochem 59, 374–381 .4959361
[37] Modi, S., Primrose, W.U., Lian, L.Y., and Roberts, G.C. (1995). Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J 310, 939–943 .7575430
[38] Munro, A.W., Daff, S., Coggins, J.R., Lindsay, J.G., and Chapman, S.K. (1996). Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239, 403–409 .8706747
[39] Narhi, L.O., and Fulco, A.J. (1986). Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261, 7160–7169 .3086309
[40] Narhi, L.O., and Fulco, A.J. (1987). Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262, 6683–6690 .3106360
[41] Neeli, R., Girvan, H.M., Lawrence, A., Warren, M.J., Leys, D., Scrutton, N.S., and Munro, A.W. (2005). The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579, 5582–5588 .16214136
[42] Noble, M.A., Miles, C.S., Chapman, S.K., Lysek, D.A., MacKay, A.C., Reid, G.A., Hanzlik, R.P., and Munro, A.W. (1999). Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339, 371–379 .10191269
[43] Ost, T.W., Clark, J., Mowat, C.G., Miles, C.S., Walkinshaw, M.D., Reid, G.A., Chapman, S.K., and Daff, S. (2003). Oxygen activation and electron transfer in flavocytochrome P450 BM3. J Am Chem Soc 125, 15010–15020 .14653735
[44] Roberts, A.G., Campbell, A.P., and Atkins, W.M. (2005). The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: ligand binding and spin state equilibria. Biochemistry 44, 1353–1366 .15667229
[45] Rock, D.A., Perkins, B.N.S., Wahlstrom, J., and Jones, J.P. (2003). A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Arch Biochem Biophys 416, 9–16 .12859976
[46] Urlacher, V.B., and Eiben, S. (2006). Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24, 324–330 .16759725
[47] van Vugt-Lussenburg, B.M., Damsten, M.C., Maasdijk, D.M., Vermeulen, N.P., and Commandeur, J.N. (2006). Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun 346, 810–818 .16777067
[48] Whitehouse, C.J., Bell, S.G., Tufton, H.G., Kenny, R.J., Ogilvie, L.C., and Wong, L.L. (2008). Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun 966–968 .18283351
[49] Whitehouse, C.J., Bell, S.G., Yang, W., Yorke, J.A., Blanford, C.F., Strong, A.J., Morse, E.J., Bartlam, M., Rao, Z., and Wong, L.L. (2009). A highly active single-mutation variant of P450BM3 (CYP102A1). Chembiochem 10, 1654–1656 .19492389
[50] Whitehouse, C.J., Yang, W., Yorke, J.A., Rowlatt, B.C., Strong, A.J., Blanford, C.F., Bell, S.G., Bartlam, M., Wong, L.L., and Rao, Z. (2010). Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3). Chembiochem 11, 2549–2556 .21110374
[51] Whitehouse, C.J.C., Yang, W., Yorke, J.A., Tufton, H.G., Ogilvie, L.C.I., Bell, S.G., Zhou, W., Bartlam, M., Rao, Z., and Wong, L.L. (2011). Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450BM3) variant. Dalton Trans May20. [Epub ahead of print]
[52] Yang, W., Bell, S.G., Wang, H., Zhou, W., Hoskins, N., Dale, A., Bartlam, M., Wong, L.L., and Rao, Z. (2010). Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 285, 27372–27384 .20576606
[53] Yeom, H.Y., and Sligar, S.G. (1997). Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue. Arch Biochem Biophys 337, 209–216 .9016815