Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1)

Benjamin Rowlatt, Jake A. Yorke, Anthony J. Strong, Christopher J. C. Whitehouse, Stephen G. Bell, Luet-Lok Wong()

PDF(663 KB)
PDF(663 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (8) : 656-671. DOI: 10.1007/s13238-011-1082-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1)

  • Benjamin Rowlatt, Jake A. Yorke, Anthony J. Strong, Christopher J. C. Whitehouse, Stephen G. Bell, Luet-Lok Wong()
Author information +
History +

Abstract

Fatty acid binding and oxidation kinetics for wild type P450BM3 (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50 mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than kcat. The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450BM3 could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration.

Keywords

P450BM3 / monooxygenase / fatty acid / cooperativity / allosteric effect / CYP102A1

Cite this article

Download citation ▾
Benjamin Rowlatt, Jake A. Yorke, Anthony J. Strong, Christopher J. C. Whitehouse, Stephen G. Bell, Luet-Lok Wong. Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1). Prot Cell, 2011, 2(8): 656‒671 https://doi.org/10.1007/s13238-011-1082-6

References

[1] Baas, B.J., Denisov, I.G., and Sligar, S.G. (2004). Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430, 218–228 .15369821
[2] Bell, S.G., Dale, A., Rees, N.H., and Wong, L.L. (2010a). A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86, 163–175 .19779713
[3] Bell, S.G., Hoskins, N., Whitehouse, C.J.C., and Wong, L.-L. (2007). Design and Engineering of Cytochrome P450 Systems. Metal Ions Life Sci 3, 437–476 .
[4] Bell, S.G., Tan, A.B., Johnson, E.O., and Wong, L.L. (2010b). Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst 6, 206–214 .20024082
[5] Bell, S.G., and Wong, L.L. (2007). P450 enzymes from the bacterium Novosphingobium aromaticivorans. Biochem Biophys Res Commun 360, 666–672 .17618912
[6] Bell, S.G., Xu, F., Johnson, E.O., Forward, I.M., Bartlam, M., Rao, Z., and Wong, L.L. (2010c). Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. J Biol Inorg Chem 15, 315–328 .19904564
[7] Brewer, C.B., and Peterson, J.A. (1988). Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin. J Biol Chem 263, 791–798 .2826462
[8] Budde, M., Maurer, S.C., Schmid, R.D., and Urlacher, V.B. (2004). Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl Microbiol Biotechnol 66, 180–186 .15375636
[9] Carmichael, A.B., and Wong, L.L. (2001). Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268, 3117–3125 .11358532
[10] Chowdhary, P.K., Alemseghed, M., and Haines, D.C. (2007). Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys 468, 32–43 .17945181
[11] Cryle, M.J., Espinoza, R.D., Smith, S.J., Matovic, N.J., and De Voss, J.J. (2006). Are branched chain fatty acids the natural substrates for P450(BM3)? Chem Commun 2353–2355 .16733577
[12] Davydov, D.R., Botchkareva, A.E., Kumar, S., He, Y.Q., and Halpert, J.R. (2004). An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF. Biochemistry 43, 6475–6485 .15157081
[13] Davydov, D.R., and Halpert, J.R. (2008). Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 4, 1523–1535 .19040328
[14] Denisov, I.G., Baas, B.J., Grinkova, Y.V., and Sligar, S.G. (2007). Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem 282, 7066–7076 .17213193
[15] Denisov, I.G., Frank, D.J., and Sligar, S.G. (2009). Cooperative properties of cytochromes P450. Pharmacol Ther 124, 151–167 .19555717
[16] Dietrich, M., Eiben, S., Asta, C., Do, T.A., Pleiss, J., and Urlacher, V.B. (2008). Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 79, 931–940 .18483737
[17] Girvan, H.M., Dunford, A.J., Neeli, R., Ekanem, I.S., Waltham, T.N., Joyce, M.G., Leys, D., Curtis, R.A., Williams, P., Fisher, K., (2011). Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer. Arch Biochem Biophys 507, 75–85 .20868649
[18] Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14, 611–650 .11409933
[19] Gustafsson, M.C., Roitel, O., Marshall, K.R., Noble, M.A., Chapman, S.K., Pessegueiro, A., Fulco, A.J., Cheesman, M.R., von Wachenfeldt, C., and Munro, A.W. (2004). Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 43, 5474–5487 .15122913
[20] Haines, D.C., Chen, B., Tomchick, D.R., Bondlela, M., Hegde, A., Machius, M., and Peterson, J.A. (2008). Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Biochemistry 47, 3662–3670 .18298086
[21] Haines, D.C., Sevrioukova, I.F., and Peterson, J.A. (2000). The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Biochemistry 39, 9419–9429 .10924137
[22] Haines, D.C., Tomchick, D.R., Machius, M., and Peterson, J.A. (2001). Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40, 13456–13465 .11695892
[23] Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A., and Deisenhofer, J. (1995). Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3, 41–62 .7743131
[24] Hegde, A., Haines, D.C., Bondlela, M., Chen, B., Schaffer, N., Tomchick, D.R., Machius, M., Nguyen, H., Chowdhary, P.K., Stewart, L., (2007). Interactions of substrates at the surface of P450s can greatly enhance substrate potency. Biochemistry 46, 14010–14017 .18004886
[25] Huang, W.C., Westlake, A.C., Maréchal, J.D., Joyce, M.G., Moody, P.C., and Roberts, G.C. (2007). Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. J Mol Biol 373, 633–651 .17868686
[26] Ingelman-Sundberg, M., and Johansson, I. (1980). Catalytic properties of purified forms of rabbit liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles. Biochemistry 19, 4004–4011 .6773560
[27] Jovanovic, T., Farid, R., Friesner, R.A., and McDermott, A.E. (2005). Thermal equilibrium of high- and low-spin forms of cytochrome P450 BM-3: repositioning of the substrate? J Am Chem Soc 127, 13548–13552 .16190718
[28] Joyce, M.G., Girvan, H.M., Munro, A.W., and Leys, D. (2004). A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme. J Biol Chem 279, 23287–23293 .15020590
[29] Kitazume, T., Haines, D.C., Estabrook, R.W., Chen, B., and Peterson, J.A. (2007). Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46, 11892–11901 .17902705
[30] Lentz, O., Urlacher, V., and Schmid, R.D. (2004). Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J Biotechnol 108, 41–49 .14741768
[31] Li, H., and Poulos, T.L. (1997). The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4, 140–146 .9033595
[32] Li, Q.S., Ogawa, J., Schmid, R.D., and Shimizu, S. (2005). Indole hydroxylation by bacterial cytochrome P450BM-3 and modulation of activity by cumene hydroperoxide. Biosci Biotechnol Biochem 69, 293–300 .15725653
[33] Malik, W.U., and Jain, A.K. (1967). Electrometric determination of critical micelle concentrations of soap solutions. J Electroanal Chem 14, 37–41 .
[34] Maurer, S.C., Kuhnel, K., Kaysser, L.A., Eiben, S., Schmid, R.D., and Urlacher, V.B. (2005). Catalytic hydroxylation in biphasic systems using CYP102A1 mutants. Adv Synth Catal 347, 1090–1098 .
[35] Maves, S.A., Yeom, H., McLean, M.A., and Sligar, S.G. (1997). Decreased substrate affinity upon alteration of the substrate-docking region in cytochrome P450BM-3. FEBS Lett 414, 213–218 .9315688
[36] Mizushima, S., Ishida, M., and Kitahara, K. (1966). Chemical composition of the protoplast membrane of Bacillus megaterium. J Biochem 59, 374–381 .4959361
[37] Modi, S., Primrose, W.U., Lian, L.Y., and Roberts, G.C. (1995). Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J 310, 939–943 .7575430
[38] Munro, A.W., Daff, S., Coggins, J.R., Lindsay, J.G., and Chapman, S.K. (1996). Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239, 403–409 .8706747
[39] Narhi, L.O., and Fulco, A.J. (1986). Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261, 7160–7169 .3086309
[40] Narhi, L.O., and Fulco, A.J. (1987). Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262, 6683–6690 .3106360
[41] Neeli, R., Girvan, H.M., Lawrence, A., Warren, M.J., Leys, D., Scrutton, N.S., and Munro, A.W. (2005). The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579, 5582–5588 .16214136
[42] Noble, M.A., Miles, C.S., Chapman, S.K., Lysek, D.A., MacKay, A.C., Reid, G.A., Hanzlik, R.P., and Munro, A.W. (1999). Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339, 371–379 .10191269
[43] Ost, T.W., Clark, J., Mowat, C.G., Miles, C.S., Walkinshaw, M.D., Reid, G.A., Chapman, S.K., and Daff, S. (2003). Oxygen activation and electron transfer in flavocytochrome P450 BM3. J Am Chem Soc 125, 15010–15020 .14653735
[44] Roberts, A.G., Campbell, A.P., and Atkins, W.M. (2005). The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: ligand binding and spin state equilibria. Biochemistry 44, 1353–1366 .15667229
[45] Rock, D.A., Perkins, B.N.S., Wahlstrom, J., and Jones, J.P. (2003). A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Arch Biochem Biophys 416, 9–16 .12859976
[46] Urlacher, V.B., and Eiben, S. (2006). Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24, 324–330 .16759725
[47] van Vugt-Lussenburg, B.M., Damsten, M.C., Maasdijk, D.M., Vermeulen, N.P., and Commandeur, J.N. (2006). Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun 346, 810–818 .16777067
[48] Whitehouse, C.J., Bell, S.G., Tufton, H.G., Kenny, R.J., Ogilvie, L.C., and Wong, L.L. (2008). Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun 966–968 .18283351
[49] Whitehouse, C.J., Bell, S.G., Yang, W., Yorke, J.A., Blanford, C.F., Strong, A.J., Morse, E.J., Bartlam, M., Rao, Z., and Wong, L.L. (2009). A highly active single-mutation variant of P450BM3 (CYP102A1). Chembiochem 10, 1654–1656 .19492389
[50] Whitehouse, C.J., Yang, W., Yorke, J.A., Rowlatt, B.C., Strong, A.J., Blanford, C.F., Bell, S.G., Bartlam, M., Wong, L.L., and Rao, Z. (2010). Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3). Chembiochem 11, 2549–2556 .21110374
[51] Whitehouse, C.J.C., Yang, W., Yorke, J.A., Tufton, H.G., Ogilvie, L.C.I., Bell, S.G., Zhou, W., Bartlam, M., Rao, Z., and Wong, L.L. (2011). Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450BM3) variant. Dalton Trans May20. [Epub ahead of print]
[52] Yang, W., Bell, S.G., Wang, H., Zhou, W., Hoskins, N., Dale, A., Bartlam, M., Wong, L.L., and Rao, Z. (2010). Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 285, 27372–27384 .20576606
[53] Yeom, H.Y., and Sligar, S.G. (1997). Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue. Arch Biochem Biophys 337, 209–216 .9016815
AI Summary AI Mindmap
PDF(663 KB)

Accesses

Citations

Detail

Sections
Recommended

/