[1] Abbink, T.E.M., and Berkhout, B. (2008). HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 134, 4-18 .18255184
[2] Agris, P.F. (2008). Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 9, 629-635 .18552770
[3] Behrens, P., Brinkmann, U., and Wellmann, A. (2003). CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis 8, 39-44 .12510150
[4] Bj?rk, G.R., Huang, B., Persson, O.P., and Bystr?m, A.S. (2007). A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13, 1245-1255 .17592039
[5] Bordo, D., and Bork, P. (2002). The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3, 741-746 .12151332
[6] Ciechanover A., Heller H., Katzetzion R., Hershko A. (1981). Activation of the Heat-Stable Polypeptide of the Atp-Dependent Proteolytic System. Proc Natl Acad Sci U S A 78, 761-765 .
[7] Dewez, M., Bauer, F., Dieu, M., Raes, M., Vandenhaute, J., and Hermand, D. (2008). The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 105, 5459-5464 .18391219
[8] Fichtner, L., Jablonowski, D., Schierhorn, A., Kitamoto, H.K., Stark, M.J.R., and Schaffrath, R. (2003). Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49, 1297-1307 .12940988
[9] Furukawa, K., Mizushima, N., Noda, T., and Ohsumi, Y. (2000). A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275, 7462-7465 .10713047
[10] Goehring, A.S., Rivers, D.M., and Sprague, G.F. Jr. (2003a). Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot Cell 2, 930-936 .14555475
[11] Goehring, A.S., Rivers, D.M., and Sprague, G.F. Jr. (2003b). Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 14, 4329-4341 .14551258
[12] Haas, A.L., Warms, J.V.B., Hershko, A., and Rose, I.A. (1982). Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257, 2543-2548 .6277905
[13] Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). The ubiquitin system. Nat Med 6, 1073-1081 .11017125
[14] Hochstrasser, M. (2000). Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2, E153-E157 .10934491
[15] Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature 458, 422-429 .19325621
[16] Huang, B., Lu, J., and Bystr?m, A.S. (2008). A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14, 2183-2194 .18755837
[17] Humbard, M.A., Miranda, H.V., Lim, J.M., Krause, D.J., Pritz, J.R., Zhou, G.Y., Chen, S.X., Wells, L., and Maupin-Furlow, J.A. (2010). Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463, 54-60 .20054389
[18] Isel, C., Lanchy, J.M., Le Grice, S.F.J., Ehresmann, C., Ehresmann, B., and Marquet, R. (1996). Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J 15, 917-924 .8631312
[19] Isel, C., Marquet, R., Keith, G., Ehresmann, C., and Ehresmann, B. (1993). Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem 268, 25269-25272 .7503978
[20] Iyer, L.M., Burroughs, A.M., and Aravind, L. (2006). The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 7, R60.16859499
[21] Jeong, J.S., Kwon, S.J., Kang, S.W., Rhee, S.G., and Kim, K. (1999). Purification and characterization of a second type thioredoxin peroxidase (type II TPx) from Saccharomyces cerevisiae. Biochemistry 38, 776-783 .9888818
[22] Johansson, M.J.O., Esberg, A., Huang, B., Bj?rk, G.R., and Bystr?m, A.S. (2008). Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28, 3301-3312 .18332122
[23] Lake, M.W., Wuebbens, M.M., Rajagopalan, K.V., and Schindelin, H. (2001). Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414, 325-329 .11713534
[24] Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. (1999). A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274, 4537-4544 .9988687
[25] Leidel, S., Pedrioli, P.G.A., Bucher, T., Brost, R., Costanzo, M., Schmidt, A., Aebersold, R., Boone, C., Hofmann, K., and Peter, M. (2009). Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458, 228-232 .19145231
[26] Ling, J.Q., and S?ll, D. (2010). Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 107, 4028-4033 .20160114
[27] Lu, J., Esberg, A., Huang, B., and Bystr?m, A.S. (2008). Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36, 1072-1080 .18096622
[28] Lu, J., Huang, B., Esberg, A., Johansson, M.J.O., and Bystr?m, A.S. (2005). The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11, 1648-1654 .16244131
[29] Marelja, Z., St?cklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J Biol Chem 283, 25178-25185 .18650437
[30] Miranda, H.V., Nembhard, N., Su, D., Hepowit, N., Krause, D.J., Pritz, J.R., Phillips, C., S?ll, D., and Maupin-Furlow, J.A. (2011). E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci U S A 108, 4417-4422 .21368171
[31] Mueller, E.G. (2006). Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2, 185-194 .16547481
[32] Nakai, Y., Nakai, M., and Hayashi, H. (2008). Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 283, 27469-27476 .18664566
[33] Nakai, Y., Nakai, M., Hayashi, H., and Kagamiyama, H. (2001). Nuclear localization of yeast Nfs1p is required for cell survival. J Biol Chem 276, 8314-8320 .11110795
[34] Nakai, Y., Umeda, N., Suzuki, T., Nakai, M., Hayashi, H., Watanabe, K., and Kagamiyama, H. (2004). Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279, 12363-12368 .14722066
[35] Netzer, N., Goodenbour, J.M., David, A., Dittmar, K.A., Jones, R.B., Schneider, J.R., Boone, D., Eves, E.M., Rosner, M.R., Gibbs, J.S., (2009). Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522-526 .19940929
[36] Noma, A., Sakaguchi, Y., and Suzuki, T. (2009). Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37, 1335-1352 .19151091
[37] Pedrioli, P.G.A., Leidel, S., and Hofmann, K. (2008). Urm1 at the crossroad of modifications. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep 9, 1196-1202 .19047990
[38] Petroski, M.D., Salvesen, G.S., and Wolf, D.A. (2011). Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress. Proc Natl Acad Sci U S A 108, 1749-1750 .21245332
[39] Pickart, C.M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8, 610-616 .15556404
[40] Rubio-Texeira, M. (2007). Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett 581, 541-550.
[41] Schlieker, C.D., Van der Veen, A.G., Damon, J.R., Spooner, E., and Ploegh, H.L. (2008). A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci U S A 105, 18255-18260 .19017811
[42] Schmitz, J., Chowdhury, M.M., H?nzelmann, P., Nimtz, M., Lee, E.Y., Schindelin, H., and Leimkühler, S. (2008). The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47, 6479-6489 .18491921
[43] Sen, G.C., and Ghosh, H.P. (1976). Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5′-end of the anticodon of yeast transfer RNA Lys2. Nucleic Acids Res 3, 523-535 .775440
[44] Shigi, N., Sakaguchi, Y., Suzuki, T., and Watanabe, K. (2006). Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. J Biol Chem 281, 14296-14306 .16547008
[45] Singh, S., Tonelli, M., Tyler, R.C., Bahrami, A., Lee, M.S., and Markley, J.L. (2005). Three-dimensional structure of the AAH26994.1 protein from Mus musculus, a putative eukaryotic Urm1. Protein Sci 14, 2095-2102 .16046629
[46] Sun, L.J., and Chen, Z.J. (2004). The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16, 119-126 .15196553
[47] Svejstrup, J.Q. (2007). Elongator complex: how many roles does it play? Curr Opin Cell Biol 19, 331-336 .17466506
[48] Ulrich, H.D. (2002). Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. Eukaryot Cell 1, 1-10 .12455966
[49] Van der Veen, A.G., Schorpp, K., Schlieker, C., Buti, L., Damon, J.R., Spooner, E., Ploegh, H.L., and Jentsch, S. (2011). Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci U S A 108, 1763-1770 .21209336
[50] Wang, C.Y., Xi, J., Begley, T.P., and Nicholson, L.K. (2001). Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8, 47-51 .11135670
[51] Wang, X.J., Yan, Q.F., and Guan, M.X. (2007). Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 581, 4228-4234 .17706197
[52] Xi, J., Ge, Y., Kinsland, C., McLafferty, F.W., and Begley, T.P. (2001). Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex.Proc Natl Acad Sci U S A 98, 8513-8518 .
[53] Xu, J.J., Zhang, J.H., Wang, L., Zhou, J., Huang, H.D., Wu, J.H., Zhong, Y., and Shi, Y.Y. (2006). Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc Natl Acad Sci U S A 103, 11625-11630 .16864801
[54] Yu, J., and Zhou, C.Z. (2008). Crystal structure of the dimeric Urm1 from the yeast Saccharomyces cerevisiae. Proteins 71, 1050-1055 .18260097