The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier

Fengbin Wang, Meiruo Liu, Rui Qiu, Chaoneng Ji()

PDF(253 KB)
PDF(253 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (8) : 612-619. DOI: 10.1007/s13238-011-1074-6
REVIEW
REVIEW

The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier

  • Fengbin Wang, Meiruo Liu, Rui Qiu, Chaoneng Ji()
Author information +
History +

Abstract

The ubiquitin-related modifier Urm1 can be covalently conjugated to lysine residues of other proteins, such as yeast Ahp1 and human MOCS3, through a mechanism involving the E1-like protein Uba4 (MOCS3 in humans). Similar to ubiquitination, urmylation requires a thioester intermediate and forms isopeptide bonds between Urm1 and its substrates. In addition, the urmylation process can be significantly enhanced by oxidative stress. Recent findings have demonstrated that Urm1 also acts as a sulfur carrier in the thiolation of eukaryotic tRNA via a mechanism that requires the formation of a thiocarboxylated Urm1. This role is very similar to that of prokaryotic sulfur carriers such as MoaD and ThiS. Evidence strongly supports the hypothesis that Urm1 is the molecular fossil in the evolutionary link between prokaryotic sulfur carriers and eukaryotic ubiquitin-like proteins. In the present review, we discuss the dual role of Urm1 in protein and tRNA modification.

Keywords

Urm1 system / tRNA modification / Ub-like protein modification

Cite this article

Download citation ▾
Fengbin Wang, Meiruo Liu, Rui Qiu, Chaoneng Ji. The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier. Prot Cell, 2011, 2(8): 612‒619 https://doi.org/10.1007/s13238-011-1074-6

References

[1] Abbink, T.E.M., and Berkhout, B. (2008). HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 134, 4-18 .18255184
[2] Agris, P.F. (2008). Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 9, 629-635 .18552770
[3] Behrens, P., Brinkmann, U., and Wellmann, A. (2003). CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis 8, 39-44 .12510150
[4] Bj?rk, G.R., Huang, B., Persson, O.P., and Bystr?m, A.S. (2007). A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13, 1245-1255 .17592039
[5] Bordo, D., and Bork, P. (2002). The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3, 741-746 .12151332
[6] Ciechanover A., Heller H., Katzetzion R., Hershko A. (1981). Activation of the Heat-Stable Polypeptide of the Atp-Dependent Proteolytic System. Proc Natl Acad Sci U S A 78, 761-765 .
[7] Dewez, M., Bauer, F., Dieu, M., Raes, M., Vandenhaute, J., and Hermand, D. (2008). The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 105, 5459-5464 .18391219
[8] Fichtner, L., Jablonowski, D., Schierhorn, A., Kitamoto, H.K., Stark, M.J.R., and Schaffrath, R. (2003). Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49, 1297-1307 .12940988
[9] Furukawa, K., Mizushima, N., Noda, T., and Ohsumi, Y. (2000). A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275, 7462-7465 .10713047
[10] Goehring, A.S., Rivers, D.M., and Sprague, G.F. Jr. (2003a). Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot Cell 2, 930-936 .14555475
[11] Goehring, A.S., Rivers, D.M., and Sprague, G.F. Jr. (2003b). Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 14, 4329-4341 .14551258
[12] Haas, A.L., Warms, J.V.B., Hershko, A., and Rose, I.A. (1982). Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257, 2543-2548 .6277905
[13] Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). The ubiquitin system. Nat Med 6, 1073-1081 .11017125
[14] Hochstrasser, M. (2000). Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2, E153-E157 .10934491
[15] Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature 458, 422-429 .19325621
[16] Huang, B., Lu, J., and Bystr?m, A.S. (2008). A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14, 2183-2194 .18755837
[17] Humbard, M.A., Miranda, H.V., Lim, J.M., Krause, D.J., Pritz, J.R., Zhou, G.Y., Chen, S.X., Wells, L., and Maupin-Furlow, J.A. (2010). Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463, 54-60 .20054389
[18] Isel, C., Lanchy, J.M., Le Grice, S.F.J., Ehresmann, C., Ehresmann, B., and Marquet, R. (1996). Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J 15, 917-924 .8631312
[19] Isel, C., Marquet, R., Keith, G., Ehresmann, C., and Ehresmann, B. (1993). Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem 268, 25269-25272 .7503978
[20] Iyer, L.M., Burroughs, A.M., and Aravind, L. (2006). The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 7, R60.16859499
[21] Jeong, J.S., Kwon, S.J., Kang, S.W., Rhee, S.G., and Kim, K. (1999). Purification and characterization of a second type thioredoxin peroxidase (type II TPx) from Saccharomyces cerevisiae. Biochemistry 38, 776-783 .9888818
[22] Johansson, M.J.O., Esberg, A., Huang, B., Bj?rk, G.R., and Bystr?m, A.S. (2008). Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28, 3301-3312 .18332122
[23] Lake, M.W., Wuebbens, M.M., Rajagopalan, K.V., and Schindelin, H. (2001). Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414, 325-329 .11713534
[24] Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. (1999). A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274, 4537-4544 .9988687
[25] Leidel, S., Pedrioli, P.G.A., Bucher, T., Brost, R., Costanzo, M., Schmidt, A., Aebersold, R., Boone, C., Hofmann, K., and Peter, M. (2009). Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458, 228-232 .19145231
[26] Ling, J.Q., and S?ll, D. (2010). Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 107, 4028-4033 .20160114
[27] Lu, J., Esberg, A., Huang, B., and Bystr?m, A.S. (2008). Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36, 1072-1080 .18096622
[28] Lu, J., Huang, B., Esberg, A., Johansson, M.J.O., and Bystr?m, A.S. (2005). The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11, 1648-1654 .16244131
[29] Marelja, Z., St?cklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J Biol Chem 283, 25178-25185 .18650437
[30] Miranda, H.V., Nembhard, N., Su, D., Hepowit, N., Krause, D.J., Pritz, J.R., Phillips, C., S?ll, D., and Maupin-Furlow, J.A. (2011). E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci U S A 108, 4417-4422 .21368171
[31] Mueller, E.G. (2006). Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2, 185-194 .16547481
[32] Nakai, Y., Nakai, M., and Hayashi, H. (2008). Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 283, 27469-27476 .18664566
[33] Nakai, Y., Nakai, M., Hayashi, H., and Kagamiyama, H. (2001). Nuclear localization of yeast Nfs1p is required for cell survival. J Biol Chem 276, 8314-8320 .11110795
[34] Nakai, Y., Umeda, N., Suzuki, T., Nakai, M., Hayashi, H., Watanabe, K., and Kagamiyama, H. (2004). Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279, 12363-12368 .14722066
[35] Netzer, N., Goodenbour, J.M., David, A., Dittmar, K.A., Jones, R.B., Schneider, J.R., Boone, D., Eves, E.M., Rosner, M.R., Gibbs, J.S., (2009). Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522-526 .19940929
[36] Noma, A., Sakaguchi, Y., and Suzuki, T. (2009). Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37, 1335-1352 .19151091
[37] Pedrioli, P.G.A., Leidel, S., and Hofmann, K. (2008). Urm1 at the crossroad of modifications. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep 9, 1196-1202 .19047990
[38] Petroski, M.D., Salvesen, G.S., and Wolf, D.A. (2011). Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress. Proc Natl Acad Sci U S A 108, 1749-1750 .21245332
[39] Pickart, C.M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8, 610-616 .15556404
[40] Rubio-Texeira, M. (2007). Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett 581, 541-550.
[41] Schlieker, C.D., Van der Veen, A.G., Damon, J.R., Spooner, E., and Ploegh, H.L. (2008). A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci U S A 105, 18255-18260 .19017811
[42] Schmitz, J., Chowdhury, M.M., H?nzelmann, P., Nimtz, M., Lee, E.Y., Schindelin, H., and Leimkühler, S. (2008). The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47, 6479-6489 .18491921
[43] Sen, G.C., and Ghosh, H.P. (1976). Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5′-end of the anticodon of yeast transfer RNA Lys2. Nucleic Acids Res 3, 523-535 .775440
[44] Shigi, N., Sakaguchi, Y., Suzuki, T., and Watanabe, K. (2006). Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. J Biol Chem 281, 14296-14306 .16547008
[45] Singh, S., Tonelli, M., Tyler, R.C., Bahrami, A., Lee, M.S., and Markley, J.L. (2005). Three-dimensional structure of the AAH26994.1 protein from Mus musculus, a putative eukaryotic Urm1. Protein Sci 14, 2095-2102 .16046629
[46] Sun, L.J., and Chen, Z.J. (2004). The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16, 119-126 .15196553
[47] Svejstrup, J.Q. (2007). Elongator complex: how many roles does it play? Curr Opin Cell Biol 19, 331-336 .17466506
[48] Ulrich, H.D. (2002). Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. Eukaryot Cell 1, 1-10 .12455966
[49] Van der Veen, A.G., Schorpp, K., Schlieker, C., Buti, L., Damon, J.R., Spooner, E., Ploegh, H.L., and Jentsch, S. (2011). Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci U S A 108, 1763-1770 .21209336
[50] Wang, C.Y., Xi, J., Begley, T.P., and Nicholson, L.K. (2001). Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8, 47-51 .11135670
[51] Wang, X.J., Yan, Q.F., and Guan, M.X. (2007). Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 581, 4228-4234 .17706197
[52] Xi, J., Ge, Y., Kinsland, C., McLafferty, F.W., and Begley, T.P. (2001). Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex.Proc Natl Acad Sci U S A 98, 8513-8518 .
[53] Xu, J.J., Zhang, J.H., Wang, L., Zhou, J., Huang, H.D., Wu, J.H., Zhong, Y., and Shi, Y.Y. (2006). Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc Natl Acad Sci U S A 103, 11625-11630 .16864801
[54] Yu, J., and Zhou, C.Z. (2008). Crystal structure of the dimeric Urm1 from the yeast Saccharomyces cerevisiae. Proteins 71, 1050-1055 .18260097
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/