[1] Bonifacino, J.S., Cosson, P., Shah, N., and Klausner, R.D. (1991). Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10, 2783-2793 .1915263
[2] Ciczora, Y., Callens, N., Montpellier, C., Bartosch, B., Cosset, F.L., Op de Beeck, A., and Dubuisson, J. (2005). Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J Gen Virol 86, 2793-2798 .16186234
[3] Colman, P.M., and Lawrence, M.C. (2003). The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4, 309-319 .12671653
[4] Davis, G.L., and Hunter, E. (1987). A charged amino acid substitution within the transmembrane anchor of the Rous sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport. J Cell Biol 105, 1191-1203 .2821009
[5] Dubay, J.W., Dubay, S.R., Shin, H.J., and Hunter, E. (1995). Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation. J Virol 69, 4675-4682 .7609032
[6] Freed, E.O., and Martin, M.A. (1996). Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70, 341-351 .8523546
[7] Gangupomu, V.K., and Abrams, C.F. (2010). All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics. Biophys J 99, 3438-3444 .21081093
[8] Gu, M., Rappaport, J., and Leppla, S.H. (1995). Furin is important but not essential for the proteolytic maturation of gp160 of HIV-1. FEBS Lett 365, 95-97 .7774724
[9] Haffar, O.K., Dowbenko, D.J., and Berman, P.W. (1988). Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107, 1677-1687 .3053734
[10] Helseth, E., Olshevsky, U., Gabuzda, D., Ardman, B., Haseltine, W., and Sodroski, J. (1990). Changes in the transmembrane region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein affect membrane fusion. J Virol 64, 6314-6318 .2243396
[11] Hessa, T., Kim, H., Bihlmaier, K., Lundin, C., Boekel, J., Andersson, H., Nilsson, I., White, S.H., and von Heijne, G. (2005). Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377-381 .15674282
[12] Kabat, D., Kozak, S.L., Wehrly, K., and Chesebro, B. (1994). Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J Virol 68, 2570-2577 .8139036
[13] Kim, J.H., Hartley, T.L., Curran, A.R., and Engelman, D.M. (2009). Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. Biochim Biophys Acta 1788, 1804-1812 .19540828
[14] Kitchen, S.G., and Zack, J.A. (1997). CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J Virol 71, 6928-6934 .9261420
[15] Kondo, N., Miyauchi, K., and Matsuda, Z. (2011). Monitoring viral-mediated membrane fusion using fluorescent reporter methods. Curr Protoc Cell Biol Chapter 26, Unit 26.9 .
[16] Kondo, N., Miyauchi, K., Meng, F., Iwamoto, A., and Matsuda, Z. (2010). Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem 285, 14681-14688 .20197275
[17] Li, L., Vorobyov, I., MacKerell, A.D. Jr, and Allen, T.W. (2008). Is arginine charged in a membrane? Biophys J 94, L11-L13 .17981901
[18] Liu, S., Kondo, N., Long, Y., Xiao, D., Iwamoto, A., and Matsuda, Z. (2010). Membrane topology analysis of HIV-1 envelope glycoprotein gp41. Retrovirology 7, 100.21118523
[19] Melikyan, G.B. (2008). Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 5, 111.19077194
[20] Miyauchi, K., Curran, A.R., Long, Y., Kondo, N., Iwamoto, A., Engelman, D.M., and Matsuda, Z. (2010). The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein. Retrovirology 7, 95.21073746
[21] Miyauchi, K., Komano, J., Yokomaku, Y., Sugiura, W., Yamamoto, N., and Matsuda, Z. (2005). Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol 79, 4720-4729 .15795258
[22] Morton, H.C., van den Herik-Oudijk, I.E., Vossebeld, P., Snijders, A., Verhoeven, A.J., Capel, P.J., and van de Winkel, J.G. (1995). Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem 270, 29781-29787 .8530370
[23] Owens, R.J., Burke, C., and Rose, J.K. (1994). Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol 68, 570-574 .8254774
[24] Pietschmann, T., Zentgraf, H., Rethwilm, A., and Lindemann, D. (2000). An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74, 4474-4482 .10775583
[25] Reeves, J.D., Gallo, S.A., Ahmad, N., Miamidian, J.L., Harvey, P.E., Sharron, M., Pohlmann, S., Sfakianos, J.N., Derdeyn, C.A., Blumenthal, R., (2002). Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 99, 16249-16254 .12444251
[26] Rowell, J.F., Stanhope, P.E., and Siliciano, R.F. (1995). Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155, 473-488 .7602119
[27] Shang, L., and Hunter, E. (2010). Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein. Virology 404, 158-167 .20605619
[28] Shang, L., Yue, L., and Hunter, E. (2008). Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection. J Virol 82, 5417-5428 .18353944
[29] Weiss, C.D. (2003). HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev 5, 214-221 .15012000
[30] Welman, M., Lemay, G., and Cohen, E.A. (2007). Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex. Virus Res 124, 103-112 .17129629
[31] Wilk, T., Pfeiffer, T., Bukovsky, A., Moldenhauer, G., and Bosch, V. (1996). Glycoprotein incorporation and HIV-1 infectivity despite exchange of the gp160 membrane-spanning domain. Virology 218, 269-274 .8615034
[32] Wyss, S., Dimitrov, A.S., Baribaud, F., Edwards, T.G., Blumenthal, R., and Hoxie, J.A. (2005). Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79, 12231-12241 .16160149
[33] Yang, C., Spies, C.P., and Compans, R.W. (1995). The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc Natl Acad Sci U S A 92, 9871-9875 .7568235