Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion

Yufei Long1,2, Fanxia Meng1, Naoyuki Kondo1,3, Aikichi Iwamoto4, Zene Matsuda1,5()

PDF(286 KB)
PDF(286 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (5) : 369-376. DOI: 10.1007/s13238-011-1051-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion

  • Yufei Long1,2, Fanxia Meng1, Naoyuki Kondo1,3, Aikichi Iwamoto4, Zene Matsuda1,5()
Author information +
History +

Abstract

Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R696 (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R696, it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R696 with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.

Keywords

human immunodeficiency virus / type-1 (HIV-1) / gp41 / membrane-spanning domain (MSD) / arginine / membrane fusion

Cite this article

Download citation ▾
Yufei Long, Fanxia Meng, Naoyuki Kondo, Aikichi Iwamoto, Zene Matsuda. Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion. Prot Cell, 2011, 2(5): 369‒376 https://doi.org/10.1007/s13238-011-1051-0

References

[1] Bonifacino, J.S., Cosson, P., Shah, N., and Klausner, R.D. (1991). Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10, 2783-2793 .1915263
[2] Ciczora, Y., Callens, N., Montpellier, C., Bartosch, B., Cosset, F.L., Op de Beeck, A., and Dubuisson, J. (2005). Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J Gen Virol 86, 2793-2798 .16186234
[3] Colman, P.M., and Lawrence, M.C. (2003). The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4, 309-319 .12671653
[4] Davis, G.L., and Hunter, E. (1987). A charged amino acid substitution within the transmembrane anchor of the Rous sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport. J Cell Biol 105, 1191-1203 .2821009
[5] Dubay, J.W., Dubay, S.R., Shin, H.J., and Hunter, E. (1995). Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation. J Virol 69, 4675-4682 .7609032
[6] Freed, E.O., and Martin, M.A. (1996). Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70, 341-351 .8523546
[7] Gangupomu, V.K., and Abrams, C.F. (2010). All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics. Biophys J 99, 3438-3444 .21081093
[8] Gu, M., Rappaport, J., and Leppla, S.H. (1995). Furin is important but not essential for the proteolytic maturation of gp160 of HIV-1. FEBS Lett 365, 95-97 .7774724
[9] Haffar, O.K., Dowbenko, D.J., and Berman, P.W. (1988). Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107, 1677-1687 .3053734
[10] Helseth, E., Olshevsky, U., Gabuzda, D., Ardman, B., Haseltine, W., and Sodroski, J. (1990). Changes in the transmembrane region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein affect membrane fusion. J Virol 64, 6314-6318 .2243396
[11] Hessa, T., Kim, H., Bihlmaier, K., Lundin, C., Boekel, J., Andersson, H., Nilsson, I., White, S.H., and von Heijne, G. (2005). Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377-381 .15674282
[12] Kabat, D., Kozak, S.L., Wehrly, K., and Chesebro, B. (1994). Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J Virol 68, 2570-2577 .8139036
[13] Kim, J.H., Hartley, T.L., Curran, A.R., and Engelman, D.M. (2009). Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. Biochim Biophys Acta 1788, 1804-1812 .19540828
[14] Kitchen, S.G., and Zack, J.A. (1997). CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J Virol 71, 6928-6934 .9261420
[15] Kondo, N., Miyauchi, K., and Matsuda, Z. (2011). Monitoring viral-mediated membrane fusion using fluorescent reporter methods. Curr Protoc Cell Biol Chapter 26, Unit 26.9 .
[16] Kondo, N., Miyauchi, K., Meng, F., Iwamoto, A., and Matsuda, Z. (2010). Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem 285, 14681-14688 .20197275
[17] Li, L., Vorobyov, I., MacKerell, A.D. Jr, and Allen, T.W. (2008). Is arginine charged in a membrane? Biophys J 94, L11-L13 .17981901
[18] Liu, S., Kondo, N., Long, Y., Xiao, D., Iwamoto, A., and Matsuda, Z. (2010). Membrane topology analysis of HIV-1 envelope glycoprotein gp41. Retrovirology 7, 100.21118523
[19] Melikyan, G.B. (2008). Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 5, 111.19077194
[20] Miyauchi, K., Curran, A.R., Long, Y., Kondo, N., Iwamoto, A., Engelman, D.M., and Matsuda, Z. (2010). The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein. Retrovirology 7, 95.21073746
[21] Miyauchi, K., Komano, J., Yokomaku, Y., Sugiura, W., Yamamoto, N., and Matsuda, Z. (2005). Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol 79, 4720-4729 .15795258
[22] Morton, H.C., van den Herik-Oudijk, I.E., Vossebeld, P., Snijders, A., Verhoeven, A.J., Capel, P.J., and van de Winkel, J.G. (1995). Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem 270, 29781-29787 .8530370
[23] Owens, R.J., Burke, C., and Rose, J.K. (1994). Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol 68, 570-574 .8254774
[24] Pietschmann, T., Zentgraf, H., Rethwilm, A., and Lindemann, D. (2000). An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74, 4474-4482 .10775583
[25] Reeves, J.D., Gallo, S.A., Ahmad, N., Miamidian, J.L., Harvey, P.E., Sharron, M., Pohlmann, S., Sfakianos, J.N., Derdeyn, C.A., Blumenthal, R., (2002). Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 99, 16249-16254 .12444251
[26] Rowell, J.F., Stanhope, P.E., and Siliciano, R.F. (1995). Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155, 473-488 .7602119
[27] Shang, L., and Hunter, E. (2010). Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein. Virology 404, 158-167 .20605619
[28] Shang, L., Yue, L., and Hunter, E. (2008). Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection. J Virol 82, 5417-5428 .18353944
[29] Weiss, C.D. (2003). HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev 5, 214-221 .15012000
[30] Welman, M., Lemay, G., and Cohen, E.A. (2007). Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex. Virus Res 124, 103-112 .17129629
[31] Wilk, T., Pfeiffer, T., Bukovsky, A., Moldenhauer, G., and Bosch, V. (1996). Glycoprotein incorporation and HIV-1 infectivity despite exchange of the gp160 membrane-spanning domain. Virology 218, 269-274 .8615034
[32] Wyss, S., Dimitrov, A.S., Baribaud, F., Edwards, T.G., Blumenthal, R., and Hoxie, J.A. (2005). Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79, 12231-12241 .16160149
[33] Yang, C., Spies, C.P., and Compans, R.W. (1995). The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc Natl Acad Sci U S A 92, 9871-9875 .7568235
AI Summary AI Mindmap
PDF(286 KB)

Accesses

Citations

Detail

Sections
Recommended

/