[1] Andersson, M.L., and Vennstr?m, B. (1997). Chicken thyroid hormone receptor alpha requires the N-terminal amino acids for exclusive nuclear localization. FEBS Lett 416, 291–296 .9373172
[2] Araki, O., Ying, H., Furuya, F., Zhu, X., and Cheng, S.Y. (2005). Thyroid hormone receptor beta mutants: Dominant negative regulators of peroxisome proliferator-activated receptor gamma action. Proc Natl Acad Sci U S A 102, 16251–16256 .16260719
[3] Araki, O., Ying, H., Zhu, X.G., Willingham, M.C., and Cheng, S.Y. (2009). Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol 23, 308–315 .19131509
[4] Bogazzi, F., Hudson, L.D., and Nikodem, V.M. (1994). A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem 269, 11683–11686 .8163464
[5] Bradley, D.J., Towle, H.C., and Young, W.S. 3rd. (1994). Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A 91, 439–443 .8290545
[6] Branco, M., Ribeiro, M., Negr?o, N., and Bianco, A.C. (1999). 3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol 276, E179–E187 .9886965
[7] Brand, M.D. (2005). The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33, 897–904 .16246006
[8] Braverman, L.E., Ingbar, S.H., and Sterling, K. (1970). Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J Clin Invest 49, 855–864 .4986007
[9] Brucker-Davis, F., Skarulis, M.C., Pikus, A., Ishizawar, D., Mastroianni, M.A., Koby, M., and Weintraub, B.D. (1996). Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. J Clin Endocrinol Metab 81, 2768–2772 .8768826
[10] Casas, F., Rochard, P., Rodier, A., Cassar-Malek, I., Marchal-Victorion, S., Wiesner, R.J., Cabello, G., and Wrutniak, C. (1999). A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19, 7913–7924 .10567517
[11] Cettour-Rose, P., Theander-Carrillo, C., Asensio, C., Klein, M., Visser, T.J., Burger, A.G., Meier, C.A., and Rohner-Jeanrenaud, F. (2005). Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion. Diabetologia 48, 624–633 .15756538
[12] Chen, J.D., and Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 .7566127
[13] Cheng, S.Y. (2000). Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1, 9–18 .11704997
[14] Cook, C.B., Kakucska, I., Lechan, R.M., and Koenig, R.J. (1992). Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 .1733708
[15] Decherf, S., Seugnet, I., Kouidhi, S., Lopez-Juarez, A., Clerget-Froidevaux, M.S., and Demeneix, B.A. (2010). Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression. Proc Natl Acad Sci U S A 107, 4471–4476 .20160073
[16] Dimitriadis, G., Mitrou, P., Lambadiari, V., Boutati, E., Maratou, E., Panagiotakos, D.B., Koukkou, E., Tzanela, M., Thalassinos, N., and Raptis, S.A. (2006). Insulin action in adipose tissue and muscle in hypothyroidism. J Clin Endocrinol Metab 91, 4930–4937 .17003097
[17] Fisher, R.P., Lisowsky, T., Parisi, M.A., and Clayton, D.A. (1992). DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267, 3358–3367 .1737790
[18] Flamant, F., and Samarut, J. (2003). Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 14, 85–90 .12591179
[19] Forman, B.M., Casanova, J., Raaka, B.M., Ghysdael, J., and Samuels, H.H. (1992). Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol Endocrinol 6, 429–442 .1316541
[20] Forrest, D., Erway, L.C., Ng, L., Altschuler, R., and Curran, T. (1996). Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13, 354–357 .8673137
[21] Furuya, F., Ying, H., Zhao, L., and Cheng, S.Y. (2007). Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 72, 171–179 .17169389
[22] Garstka, H.L., F?cke, M., Escribano, J.R., and Wiesner, R.J. (1994). Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200, 619–626 .8166737
[23] Gauthier, K., Billon, C., Bissler, M., Beylot, M., Lobaccaro, J.M., Vanacker, J.M., and Samarut, J. (2010). Thyroid hormone receptor beta (TRbeta) and liver X receptor (LXR) regulate carbohydrate-response element-binding protein (ChREBP) expression in a tissue-selective manner. J Biol Chem 285, 28156–28163 .20615868
[24] Guada?o-Ferraz, A., Benavides-Piccione, R., Venero, C., Lancha, C., Vennstr?m, B., Sandi, C., DeFelipe, J., and Bernal, J. (2003). Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8, 30–38 .12556906
[25] Harper, M.E., and Seifert, E.L. (2008). Thyroid hormone effects on mitochondrial energetics. Thyroid 18, 145–156 .18279015
[26] Hashimoto, K., Ishida, E., Matsumoto, S., Okada, S., Yamada, M., Satoh, T., Monden, T., and Mori, M. (2009). Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 150, 3417–3424 .19324998
[27] Hiroi, Y., Kim, H.H., Ying, H., Furuya, F., Huang, Z., Simoncini, T., Noma, K., Ueki, K., Nguyen, N.H., Scanlan, T.S., (2006). Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103, 14104–14109 .16966610
[28] Hodin, R.A., Lazar, M.A., and Chin, W.W. (1990). Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J Clin Invest 85, 101–105 .2153150
[29] Hodin, R.A., Lazar, M.A., Wintman, B.I., Darling, D.S., Koenig, R.J., Larsen, P.R., Moore, D.D., and Chin, W.W. (1989). Identification of a thyroid hormone receptor that is pituitary-specific. Science 244, 76–79 .2539642
[30] H?rlein, A.J., N??r, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., S?derstr?m, M., Glass, C.K., (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 .7566114
[31] Hwang, J.H., Pan, J.W., Heydari, S., Hetherington, H.P., and Stein, D.T. (2001). Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 90, 1267–1274 .11247923
[32] Itoh, Y., Esaki, T., Kaneshige, M., Suzuki, H., Cook, M., Sokoloff, L., Cheng, S.Y., and Nunez, J. (2001). Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci U S A 98, 9913–9918 .11481455
[33] Izumo, S., and Mahdavi, V. (1988). Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 334, 539–542 .2841611
[34] Jackson, I.M., Prentice, C.R., and McKiddie, M.T. (1970). The effect of hypothyroidism on glucose tolerance and insulin metabolism. J Endocrinol 47, 257–258 .5431696
[35] Jansen, M.S., Cook, G.A., Song, S., and Park, E.A. (2000). Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. J Biol Chem 275, 34989–34997 .10956641
[36] Kaneshige, M., Kaneshige, K., Zhu, X., Dace, A., Garrett, L., Carter, T.A., Kazlauskaite, R., Pankratz, D.G., Wynshaw-Boris, A., Refetoff, S., (2000). Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97, 13209–13214 .11069286
[37] Kaneshige, M., Suzuki, H., Kaneshige, K., Cheng, J., Wimbrow, H., Barlow, C., Willingham, M.C., and Cheng, S. (2001). A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci U S A 98, 15095–15100 .11734632
[38] Kim, B. (2008). Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18, 141–144 .18279014
[39] K?hrle, J. (2000). The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Rev Endocr Metab Disord 1, 49–58 .11704992
[40] Krssak, M., Falk Petersen, K., Dresner, A., DiPietro, L., Vogel, S.M., Rothman, D.L., Roden, M., and Shulman, G.I. (1999). Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113–116 .10027589
[41] Lebon, V., Dufour, S., Petersen, K.F., Ren, J., Jucker, B.M., Slezak, L.A., Cline, G.W., Rothman, D.L., and Shulman, G.I. (2001). Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J Clin Invest 108, 733–737 .11544279
[42] Ledesma, A., de Lacoba, M.G., and Rial, E. (2002). The mitochondrial uncoupling proteins. Genome Biol 3, REVIEWS3015.
[43] Liu, Y.Y., Schultz, J.J., and Brent, G.A. (2003). A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278, 38913–38920 .12869545
[44] López, M., Varela, L., Vázquez, M.J., Rodríguez-Cuenca, S., González, C.R., Velagapudi, V.R., Morgan, D.A., Schoenmakers, E., Agassandian, K., Lage, R., (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16, 1001–1008 .20802499
[45] Macchia, P.E., Takeuchi, Y., Kawai, T., Cua, K., Gauthier, K., Chassande, O., Seo, H., Hayashi, Y., Samarut, J., Murata, Y., (2001). Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proc Natl Acad Sci U S A 98, 349–354 .11120878
[46] Marin-Garcia, J., Ananthakrishnan, R., and Goldenthal, M.J. (2000). Heart mitochondrial DNA and enzyme changes during early human development. Mol Cell Biochem 210, 47–52 .10976757
[47] Marrif, H., Schifman, A., Stepanyan, Z., Gillis, M.A., Calderone, A., Weiss, R.E., Samarut, J., and Silva, J.E. (2005). Temperature homeostasis in transgenic mice lacking thyroid hormone receptor-alpha gene products. Endocrinology 146, 2872–2884 .15845618
[48] McKenna, N.J., Lanz, R.B., and O’Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20, 321–344 .10368774
[49] Meier-Heusler, S.C., Zhu, X., Juge-Aubry, C., Pernin, A., Burger, A.G., Cheng, S.Y., and Meier, C.A. (1995). Modulation of thyroid hormone action by mutant thyroid hormone receptors, c-erbA alpha 2 and peroxisome proliferator-activated receptor: evidence for different mechanisms of inhibition. Mol Cell Endocrinol 107, 55–66 .7796935
[50] Mitsuhashi, T., Tennyson, G.E., and Nikodem, V.M. (1988). Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A 85, 5804–5808 .2901090
[51] Moeller, L.C., Dumitrescu, A.M., and Refetoff, S. (2005). Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19, 2955–2963 .16051672
[52] Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L., and Evans, R.M. (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 .9150137
[53] Nunez, J., Celi, F.S., Ng, L., and Forrest, D. (2008). Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 287, 1–12 .18448240
[54] Okajima, F., and Ui, M. (1979). Metabolism of glucose in hyper- and hypo-thyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3H-labelled glucose. Biochem J 182, 565–575 .508297
[55] Oppenheimer, J.H., Schwartz, H.L., Lane, J.T., and Thompson, M.P. (1991). Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest 87, 125–132 .1985090
[56] Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 .18614015
[57] Parrilla, R., Mixson, A.J., McPherson, J.A., McClaskey, J.H., and Weintraub, B.D. (1991). Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest 88, 2123–2130 .1661299
[58] Petersen, K.F., Blair, J.B., and Shulman, G.I. (1995). Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver. Metabolism 44, 1380–1383 .7476321
[59] Petersen, K.F., Cline, G.W., Blair, J.B., and Shulman, G.I. (1994). Substrate cycling between pyruvate and oxaloacetate in awake normal and 3,3′-5-triiodo-L-thyronine-treated rats. Am J Physiol 267, E273–E277 .8074207
[60] Pihlajam?ki, J., Boes, T., Kim, E.Y., Dearie, F., Kim, B.W., Schroeder, J., Mun, E., Nasser, I., Park, P.J., Bianco, A.C., (2009). Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 94, 3521–3529 .19549744
[61] Raboudi, N., Arem, R., Jones, R.H., Chap, Z., Pena, J., Chou, J., and Field, J.B. (1989). Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism. Am J Physiol 256, E159–E166 .2643338
[62] Randin, J.P., Scazziga, B., Jéquier, E., and Felber, J.P. (1985). Study of glucose and lipid metabolism by continuous indirect calorimetry in Graves’ disease: effect of an oral glucose load. J Clin Endocrinol Metab 61, 1165–1171 .3840492
[63] Ribeiro, M.O., Bianco, S.D., Kaneshige, M., Schultz, J.J., Cheng, S.Y., Bianco, A.C., and Brent, G.A. (2010). Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology 151, 432–440 .19906816
[64] Ribeiro, M.O., Carvalho, S.D., Schultz, J.J., Chiellini, G., Scanlan, T.S., Bianco, A.C., and Brent, G.A. (2001). Thyroid hormone—sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform—specific. J Clin Invest 108, 97–105 .11435461
[65] Roos, A., Bakker, S.J., Links, T.P., Gans, R.O., and Wolffenbuttel, B.H. (2007). Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J Clin Endocrinol Metab 92, 491–496 .17090642
[66] Rubio, A., Raasmaja, A., Maia, A.L., Kim, K.R., and Silva, J.E. (1995). Effects of thyroid hormone on norepinephrine signaling in brown adipose tissue. I. Beta 1- and beta 2-adrenergic receptors and cyclic adenosine 3′,5′-monophosphate generation. Endocrinology 136, 3267–3276 .7628360
[67] Sap, J., Mu?oz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstr?m, B. (1986). The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 .2879242
[68] Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B., and Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15, 5336–5348 .8895578
[69] Schr?der, M., Müller, K.M., Nayeri, S., Kahlen, J.P., and Carlberg, C. (1994). Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature 370, 382–386 .8047145
[70] Shen, D.C., Davidson, M.B., Kuo, S.W., and Sheu, W.H. (1988). Peripheral and hepatic insulin antagonism in hyperthyroidism. J Clin Endocrinol Metab 66, 565–569 .3280588
[71] Shibusawa, N., Hashimoto, K., Nikrodhanond, A.A., Liberman, M.C., Applebury, M.L., Liao, X.H., Robbins, J.T., Refetoff, S., Cohen, R.N., and Wondisford, F.E. (2003). Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. J Clin Invest 112, 588–597 .12925699
[72] Sinha, R., Dufour, S., Petersen, K.F., LeBon, V., Enoksson, S., Ma, Y.Z., Savoye, M., Rothman, D.L., Shulman, G.I., and Caprio, S. (2002). Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51, 1022–1027 .11916921
[73] Sj?gren, M., Alkemade, A., Mittag, J., Nordstr?m, K., Katz, A., Rozell, B., Westerblad, H., Arner, A., and Vennstr?m, B. (2007). Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J 26, 4535–4545 .17932484
[74] Ting, Y.T., Bhat, M.K., Wong, R., and Cheng, S. (1997). Tissue-specific stabilization of the thyroid hormone beta1 nuclear receptor by phosphorylation. J Biol Chem 272, 4129–4134 .9020124
[75] Ting, Y.T., and Cheng, S.Y. (1997). Hormone-activated phosphorylation of human beta1 thyroid hormone nuclear receptor. Thyroid 7, 463–469 .9226220
[76] Tinnikov, A., Nordstr?m, K., Thorén, P., Kindblom, J.M., Malin, S., Rozell, B., Adams, M., Rajanayagam, O., Pettersson, S., Ohlsson, C., (2002). Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21, 5079–5087 .12356724
[77] Venero, C., Guada?o-Ferraz, A., Herrero, A.I., Nordstr?m, K., Manzano, J., de Escobar, G.M., Bernal, J., and Vennstr?m, B. (2005). Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19, 2152–2163 .16131613
[78] Wagner, B.K., Kitami, T., Gilbert, T.J., Peck, D., Ramanathan, A., Schreiber, S.L., Golub, T.R., and Mootha, V.K. (2008). Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26, 343–351 .18297058
[79] Wagner, R.L., Apriletti, J.W., McGrath, M.E., West, B.L., Baxter, J.D., and Fletterick, R.J. (1995). A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 .7501015
[80] Weinberger, C., Thompson, C.C., Ong, E.S., Lebo, R., Gruol, D.J., and Evans, R.M. (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 .2879243
[81] Wilcoxon, J.S., Nadolski, G.J., Samarut, J., Chassande, O., and Redei, E.E. (2007). Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav Brain Res 177, 109–116 .17129617
[82] Wrutniak, C., Cassar-Malek, I., Marchal, S., Rascle, A., Heusser, S., Keller, J.M., Fléchon, J., Dau?a, M., Samarut, J., Ghysdael, J., (1995). A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270, 16347–16354 .7608204
[83] Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 .10412986
[84] Yen, P.M. (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81, 1097–1142 .11427693
[85] Yen, P.M., Sunday, M.E., Darling, D.S., and Chin, W.W. (1992). Isoform-specific thyroid hormone receptor antibodies detect multiple thyroid hormone receptors in rat and human pituitaries. Endocrinology 130, 1539–1546 .1537303
[86] Ying, H., Araki, O., Furuya, F., Kato, Y., and Cheng, S.Y. (2007). Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 27, 2359–2371 .17220280
[87] Yoshikawa, T., Shimano, H., Amemiya-Kudo, M., Yahagi, N., Hasty, A.H., Matsuzaka, T., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., (2001). Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21, 2991–3000 .11287605
[88] Zhang, X.K., and Pfahl, M. (1993). Hetero- and homodimeric receptors in thyroid hormone and vitamin A action. Receptor 3, 183–191 .8167569
[89] Zhu, X.G., McPhie, P., and Cheng, S.Y. (1997). Differential sensitivity of thyroid hormone receptor isoform homodimers and mutant heterodimers to hormone-induced dissociation from deoxyribonucleic acid: its role in dominant negative action. Endocrinology 138, 1456–1463 .9075702