Thyroid hormone action in metabolic regulation

Yiyun Song, Xuan Yao, Hao Ying()

PDF(279 KB)
PDF(279 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (5) : 358-368. DOI: 10.1007/s13238-011-1046-x
REVIEW
REVIEW

Thyroid hormone action in metabolic regulation

  • Yiyun Song, Xuan Yao, Hao Ying()
Author information +
History +

Abstract

Thyroid hormone plays pivotal roles in growth, differentiation, development and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. The transcriptional activity of TRs is modulated by multiple factors including various TR isoforms, diverse thyroid hormone response elements, different heterodimeric partners, coregulators, and the cellular location of TRs. In the present review, we summarize recent advance in understanding the molecular mechanisms of thyroid hormone action obtained from human subject research, thyroid hormone mimetics application, TR isoform-specific knock-in mouse models, and mitochondrion study with highlights in metabolic regulations. Finally, as future perspectives, we share our thoughts about current challenges and possible approaches to promote our knowledge of thyroid hormone action in metabolism.

Keywords

thyroid hormone / thyroid hormone receptor / metabolic regulation / central and peripheral effect / thyroid diseases

Cite this article

Download citation ▾
Yiyun Song, Xuan Yao, Hao Ying. Thyroid hormone action in metabolic regulation. Prot Cell, 2011, 2(5): 358‒368 https://doi.org/10.1007/s13238-011-1046-x

References

[1] Andersson, M.L., and Vennstr?m, B. (1997). Chicken thyroid hormone receptor alpha requires the N-terminal amino acids for exclusive nuclear localization. FEBS Lett 416, 291–296 .9373172
[2] Araki, O., Ying, H., Furuya, F., Zhu, X., and Cheng, S.Y. (2005). Thyroid hormone receptor beta mutants: Dominant negative regulators of peroxisome proliferator-activated receptor gamma action. Proc Natl Acad Sci U S A 102, 16251–16256 .16260719
[3] Araki, O., Ying, H., Zhu, X.G., Willingham, M.C., and Cheng, S.Y. (2009). Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol 23, 308–315 .19131509
[4] Bogazzi, F., Hudson, L.D., and Nikodem, V.M. (1994). A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem 269, 11683–11686 .8163464
[5] Bradley, D.J., Towle, H.C., and Young, W.S. 3rd. (1994). Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A 91, 439–443 .8290545
[6] Branco, M., Ribeiro, M., Negr?o, N., and Bianco, A.C. (1999). 3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol 276, E179–E187 .9886965
[7] Brand, M.D. (2005). The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33, 897–904 .16246006
[8] Braverman, L.E., Ingbar, S.H., and Sterling, K. (1970). Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J Clin Invest 49, 855–864 .4986007
[9] Brucker-Davis, F., Skarulis, M.C., Pikus, A., Ishizawar, D., Mastroianni, M.A., Koby, M., and Weintraub, B.D. (1996). Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. J Clin Endocrinol Metab 81, 2768–2772 .8768826
[10] Casas, F., Rochard, P., Rodier, A., Cassar-Malek, I., Marchal-Victorion, S., Wiesner, R.J., Cabello, G., and Wrutniak, C. (1999). A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19, 7913–7924 .10567517
[11] Cettour-Rose, P., Theander-Carrillo, C., Asensio, C., Klein, M., Visser, T.J., Burger, A.G., Meier, C.A., and Rohner-Jeanrenaud, F. (2005). Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion. Diabetologia 48, 624–633 .15756538
[12] Chen, J.D., and Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 .7566127
[13] Cheng, S.Y. (2000). Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1, 9–18 .11704997
[14] Cook, C.B., Kakucska, I., Lechan, R.M., and Koenig, R.J. (1992). Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 .1733708
[15] Decherf, S., Seugnet, I., Kouidhi, S., Lopez-Juarez, A., Clerget-Froidevaux, M.S., and Demeneix, B.A. (2010). Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression. Proc Natl Acad Sci U S A 107, 4471–4476 .20160073
[16] Dimitriadis, G., Mitrou, P., Lambadiari, V., Boutati, E., Maratou, E., Panagiotakos, D.B., Koukkou, E., Tzanela, M., Thalassinos, N., and Raptis, S.A. (2006). Insulin action in adipose tissue and muscle in hypothyroidism. J Clin Endocrinol Metab 91, 4930–4937 .17003097
[17] Fisher, R.P., Lisowsky, T., Parisi, M.A., and Clayton, D.A. (1992). DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267, 3358–3367 .1737790
[18] Flamant, F., and Samarut, J. (2003). Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 14, 85–90 .12591179
[19] Forman, B.M., Casanova, J., Raaka, B.M., Ghysdael, J., and Samuels, H.H. (1992). Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol Endocrinol 6, 429–442 .1316541
[20] Forrest, D., Erway, L.C., Ng, L., Altschuler, R., and Curran, T. (1996). Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13, 354–357 .8673137
[21] Furuya, F., Ying, H., Zhao, L., and Cheng, S.Y. (2007). Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 72, 171–179 .17169389
[22] Garstka, H.L., F?cke, M., Escribano, J.R., and Wiesner, R.J. (1994). Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200, 619–626 .8166737
[23] Gauthier, K., Billon, C., Bissler, M., Beylot, M., Lobaccaro, J.M., Vanacker, J.M., and Samarut, J. (2010). Thyroid hormone receptor beta (TRbeta) and liver X receptor (LXR) regulate carbohydrate-response element-binding protein (ChREBP) expression in a tissue-selective manner. J Biol Chem 285, 28156–28163 .20615868
[24] Guada?o-Ferraz, A., Benavides-Piccione, R., Venero, C., Lancha, C., Vennstr?m, B., Sandi, C., DeFelipe, J., and Bernal, J. (2003). Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8, 30–38 .12556906
[25] Harper, M.E., and Seifert, E.L. (2008). Thyroid hormone effects on mitochondrial energetics. Thyroid 18, 145–156 .18279015
[26] Hashimoto, K., Ishida, E., Matsumoto, S., Okada, S., Yamada, M., Satoh, T., Monden, T., and Mori, M. (2009). Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 150, 3417–3424 .19324998
[27] Hiroi, Y., Kim, H.H., Ying, H., Furuya, F., Huang, Z., Simoncini, T., Noma, K., Ueki, K., Nguyen, N.H., Scanlan, T.S., (2006). Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103, 14104–14109 .16966610
[28] Hodin, R.A., Lazar, M.A., and Chin, W.W. (1990). Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J Clin Invest 85, 101–105 .2153150
[29] Hodin, R.A., Lazar, M.A., Wintman, B.I., Darling, D.S., Koenig, R.J., Larsen, P.R., Moore, D.D., and Chin, W.W. (1989). Identification of a thyroid hormone receptor that is pituitary-specific. Science 244, 76–79 .2539642
[30] H?rlein, A.J., N??r, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., S?derstr?m, M., Glass, C.K., (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 .7566114
[31] Hwang, J.H., Pan, J.W., Heydari, S., Hetherington, H.P., and Stein, D.T. (2001). Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 90, 1267–1274 .11247923
[32] Itoh, Y., Esaki, T., Kaneshige, M., Suzuki, H., Cook, M., Sokoloff, L., Cheng, S.Y., and Nunez, J. (2001). Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci U S A 98, 9913–9918 .11481455
[33] Izumo, S., and Mahdavi, V. (1988). Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 334, 539–542 .2841611
[34] Jackson, I.M., Prentice, C.R., and McKiddie, M.T. (1970). The effect of hypothyroidism on glucose tolerance and insulin metabolism. J Endocrinol 47, 257–258 .5431696
[35] Jansen, M.S., Cook, G.A., Song, S., and Park, E.A. (2000). Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. J Biol Chem 275, 34989–34997 .10956641
[36] Kaneshige, M., Kaneshige, K., Zhu, X., Dace, A., Garrett, L., Carter, T.A., Kazlauskaite, R., Pankratz, D.G., Wynshaw-Boris, A., Refetoff, S., (2000). Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97, 13209–13214 .11069286
[37] Kaneshige, M., Suzuki, H., Kaneshige, K., Cheng, J., Wimbrow, H., Barlow, C., Willingham, M.C., and Cheng, S. (2001). A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci U S A 98, 15095–15100 .11734632
[38] Kim, B. (2008). Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18, 141–144 .18279014
[39] K?hrle, J. (2000). The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Rev Endocr Metab Disord 1, 49–58 .11704992
[40] Krssak, M., Falk Petersen, K., Dresner, A., DiPietro, L., Vogel, S.M., Rothman, D.L., Roden, M., and Shulman, G.I. (1999). Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113–116 .10027589
[41] Lebon, V., Dufour, S., Petersen, K.F., Ren, J., Jucker, B.M., Slezak, L.A., Cline, G.W., Rothman, D.L., and Shulman, G.I. (2001). Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J Clin Invest 108, 733–737 .11544279
[42] Ledesma, A., de Lacoba, M.G., and Rial, E. (2002). The mitochondrial uncoupling proteins. Genome Biol 3, REVIEWS3015.
[43] Liu, Y.Y., Schultz, J.J., and Brent, G.A. (2003). A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278, 38913–38920 .12869545
[44] López, M., Varela, L., Vázquez, M.J., Rodríguez-Cuenca, S., González, C.R., Velagapudi, V.R., Morgan, D.A., Schoenmakers, E., Agassandian, K., Lage, R., (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16, 1001–1008 .20802499
[45] Macchia, P.E., Takeuchi, Y., Kawai, T., Cua, K., Gauthier, K., Chassande, O., Seo, H., Hayashi, Y., Samarut, J., Murata, Y., (2001). Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proc Natl Acad Sci U S A 98, 349–354 .11120878
[46] Marin-Garcia, J., Ananthakrishnan, R., and Goldenthal, M.J. (2000). Heart mitochondrial DNA and enzyme changes during early human development. Mol Cell Biochem 210, 47–52 .10976757
[47] Marrif, H., Schifman, A., Stepanyan, Z., Gillis, M.A., Calderone, A., Weiss, R.E., Samarut, J., and Silva, J.E. (2005). Temperature homeostasis in transgenic mice lacking thyroid hormone receptor-alpha gene products. Endocrinology 146, 2872–2884 .15845618
[48] McKenna, N.J., Lanz, R.B., and O’Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20, 321–344 .10368774
[49] Meier-Heusler, S.C., Zhu, X., Juge-Aubry, C., Pernin, A., Burger, A.G., Cheng, S.Y., and Meier, C.A. (1995). Modulation of thyroid hormone action by mutant thyroid hormone receptors, c-erbA alpha 2 and peroxisome proliferator-activated receptor: evidence for different mechanisms of inhibition. Mol Cell Endocrinol 107, 55–66 .7796935
[50] Mitsuhashi, T., Tennyson, G.E., and Nikodem, V.M. (1988). Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A 85, 5804–5808 .2901090
[51] Moeller, L.C., Dumitrescu, A.M., and Refetoff, S. (2005). Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19, 2955–2963 .16051672
[52] Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L., and Evans, R.M. (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 .9150137
[53] Nunez, J., Celi, F.S., Ng, L., and Forrest, D. (2008). Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 287, 1–12 .18448240
[54] Okajima, F., and Ui, M. (1979). Metabolism of glucose in hyper- and hypo-thyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3H-labelled glucose. Biochem J 182, 565–575 .508297
[55] Oppenheimer, J.H., Schwartz, H.L., Lane, J.T., and Thompson, M.P. (1991). Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest 87, 125–132 .1985090
[56] Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 .18614015
[57] Parrilla, R., Mixson, A.J., McPherson, J.A., McClaskey, J.H., and Weintraub, B.D. (1991). Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest 88, 2123–2130 .1661299
[58] Petersen, K.F., Blair, J.B., and Shulman, G.I. (1995). Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver. Metabolism 44, 1380–1383 .7476321
[59] Petersen, K.F., Cline, G.W., Blair, J.B., and Shulman, G.I. (1994). Substrate cycling between pyruvate and oxaloacetate in awake normal and 3,3′-5-triiodo-L-thyronine-treated rats. Am J Physiol 267, E273–E277 .8074207
[60] Pihlajam?ki, J., Boes, T., Kim, E.Y., Dearie, F., Kim, B.W., Schroeder, J., Mun, E., Nasser, I., Park, P.J., Bianco, A.C., (2009). Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 94, 3521–3529 .19549744
[61] Raboudi, N., Arem, R., Jones, R.H., Chap, Z., Pena, J., Chou, J., and Field, J.B. (1989). Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism. Am J Physiol 256, E159–E166 .2643338
[62] Randin, J.P., Scazziga, B., Jéquier, E., and Felber, J.P. (1985). Study of glucose and lipid metabolism by continuous indirect calorimetry in Graves’ disease: effect of an oral glucose load. J Clin Endocrinol Metab 61, 1165–1171 .3840492
[63] Ribeiro, M.O., Bianco, S.D., Kaneshige, M., Schultz, J.J., Cheng, S.Y., Bianco, A.C., and Brent, G.A. (2010). Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology 151, 432–440 .19906816
[64] Ribeiro, M.O., Carvalho, S.D., Schultz, J.J., Chiellini, G., Scanlan, T.S., Bianco, A.C., and Brent, G.A. (2001). Thyroid hormone—sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform—specific. J Clin Invest 108, 97–105 .11435461
[65] Roos, A., Bakker, S.J., Links, T.P., Gans, R.O., and Wolffenbuttel, B.H. (2007). Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J Clin Endocrinol Metab 92, 491–496 .17090642
[66] Rubio, A., Raasmaja, A., Maia, A.L., Kim, K.R., and Silva, J.E. (1995). Effects of thyroid hormone on norepinephrine signaling in brown adipose tissue. I. Beta 1- and beta 2-adrenergic receptors and cyclic adenosine 3′,5′-monophosphate generation. Endocrinology 136, 3267–3276 .7628360
[67] Sap, J., Mu?oz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstr?m, B. (1986). The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 .2879242
[68] Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B., and Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15, 5336–5348 .8895578
[69] Schr?der, M., Müller, K.M., Nayeri, S., Kahlen, J.P., and Carlberg, C. (1994). Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature 370, 382–386 .8047145
[70] Shen, D.C., Davidson, M.B., Kuo, S.W., and Sheu, W.H. (1988). Peripheral and hepatic insulin antagonism in hyperthyroidism. J Clin Endocrinol Metab 66, 565–569 .3280588
[71] Shibusawa, N., Hashimoto, K., Nikrodhanond, A.A., Liberman, M.C., Applebury, M.L., Liao, X.H., Robbins, J.T., Refetoff, S., Cohen, R.N., and Wondisford, F.E. (2003). Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. J Clin Invest 112, 588–597 .12925699
[72] Sinha, R., Dufour, S., Petersen, K.F., LeBon, V., Enoksson, S., Ma, Y.Z., Savoye, M., Rothman, D.L., Shulman, G.I., and Caprio, S. (2002). Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51, 1022–1027 .11916921
[73] Sj?gren, M., Alkemade, A., Mittag, J., Nordstr?m, K., Katz, A., Rozell, B., Westerblad, H., Arner, A., and Vennstr?m, B. (2007). Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J 26, 4535–4545 .17932484
[74] Ting, Y.T., Bhat, M.K., Wong, R., and Cheng, S. (1997). Tissue-specific stabilization of the thyroid hormone beta1 nuclear receptor by phosphorylation. J Biol Chem 272, 4129–4134 .9020124
[75] Ting, Y.T., and Cheng, S.Y. (1997). Hormone-activated phosphorylation of human beta1 thyroid hormone nuclear receptor. Thyroid 7, 463–469 .9226220
[76] Tinnikov, A., Nordstr?m, K., Thorén, P., Kindblom, J.M., Malin, S., Rozell, B., Adams, M., Rajanayagam, O., Pettersson, S., Ohlsson, C., (2002). Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21, 5079–5087 .12356724
[77] Venero, C., Guada?o-Ferraz, A., Herrero, A.I., Nordstr?m, K., Manzano, J., de Escobar, G.M., Bernal, J., and Vennstr?m, B. (2005). Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19, 2152–2163 .16131613
[78] Wagner, B.K., Kitami, T., Gilbert, T.J., Peck, D., Ramanathan, A., Schreiber, S.L., Golub, T.R., and Mootha, V.K. (2008). Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26, 343–351 .18297058
[79] Wagner, R.L., Apriletti, J.W., McGrath, M.E., West, B.L., Baxter, J.D., and Fletterick, R.J. (1995). A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 .7501015
[80] Weinberger, C., Thompson, C.C., Ong, E.S., Lebo, R., Gruol, D.J., and Evans, R.M. (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 .2879243
[81] Wilcoxon, J.S., Nadolski, G.J., Samarut, J., Chassande, O., and Redei, E.E. (2007). Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav Brain Res 177, 109–116 .17129617
[82] Wrutniak, C., Cassar-Malek, I., Marchal, S., Rascle, A., Heusser, S., Keller, J.M., Fléchon, J., Dau?a, M., Samarut, J., Ghysdael, J., (1995). A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270, 16347–16354 .7608204
[83] Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 .10412986
[84] Yen, P.M. (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81, 1097–1142 .11427693
[85] Yen, P.M., Sunday, M.E., Darling, D.S., and Chin, W.W. (1992). Isoform-specific thyroid hormone receptor antibodies detect multiple thyroid hormone receptors in rat and human pituitaries. Endocrinology 130, 1539–1546 .1537303
[86] Ying, H., Araki, O., Furuya, F., Kato, Y., and Cheng, S.Y. (2007). Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 27, 2359–2371 .17220280
[87] Yoshikawa, T., Shimano, H., Amemiya-Kudo, M., Yahagi, N., Hasty, A.H., Matsuzaka, T., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., (2001). Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21, 2991–3000 .11287605
[88] Zhang, X.K., and Pfahl, M. (1993). Hetero- and homodimeric receptors in thyroid hormone and vitamin A action. Receptor 3, 183–191 .8167569
[89] Zhu, X.G., McPhie, P., and Cheng, S.Y. (1997). Differential sensitivity of thyroid hormone receptor isoform homodimers and mutant heterodimers to hormone-induced dissociation from deoxyribonucleic acid: its role in dominant negative action. Endocrinology 138, 1456–1463 .9075702
AI Summary AI Mindmap
PDF(279 KB)

Accesses

Citations

Detail

Sections
Recommended

/