[1] Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., and Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8, 251–259 .20190823
[2] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. (2010). GenBank. Nucleic Acids Res 38, D46–D51 .19910366
[3] Biers, E.J., Wang, K., Pennington, C., Belas, R., Chen, F., and Moran, M.A. (2008). Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl Environ Microbiol 74, 2933–2939 .18359833
[4] Bonten, M.J., Willems, R., and Weinstein, R.A. (2001). Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis 1, 314–325 .11871804
[5] Bush, K. (2010). Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13, 558–564 .20920882
[6] Crawford, P.A., Yang, K.W., Sharma, N., Bennett, B., and Crowder, M.W. (2005). Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry 44, 5168–5176 .15794654
[7] D’Costa, V.M., McGrann, K.M., Hughes, D.W., and Wright, G.D. (2006). Sampling the antibiotic resistome. Science 311, 374–377 .16424339
[8] Fudou, R., Jojima, Y., Iizuka, T., and Yamanaka, S. (2002). Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 48, 109–116 .12469307
[9] Hehemann, J.H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., and Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 .20376150
[10] Hu, Z., Gunasekera, T.S., Spadafora, L., Bennett, B., and Crowder, M.W. (2008). Metal content of metallo–beta–lactamase L1 is determined by the bioavailability of metal ions. Biochemistry 47, 7947–7953 .
[11] Hu, Z., Periyannan, G., Bennett, B., and Crowder, M.W. (2008). Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc 130, 14207–14216 .18831550
[12] Huo, T.I. (2010). The first case of multidrug-resistant NDM-1-harboring Enterobacteriaceae in Taiwan: here comes the superbacteria! J Chin Med Assoc 73, 557–558 .21093820
[13] Hutchings, M.I., Palmer, T., Harrington, D.J., and Sutcliffe, I.C. (2009). Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold ’em. Trends Microbiol 17, 13–21 .19059780
[14] Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10, 597–602 .20705517
[15] Levy, S.B., and Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10, S122–S129 .15577930
[16] Marshall, C.G., Broadhead, G., Leskiw, B.K., and Wright, G.D. (1997). D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci U S A 94, 6480–6483 .9177243
[17] Martínez, J.L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 .18635792
[18] Martínez, J.L., Baquero, F., and Andersson, D.I. (2007). Predicting antibiotic resistance. Nat Rev Microbiol 5, 958–965 .18007678
[19] McDaniel, L.D., Young, E., Delaney, J., Ruhnau, F., Ritchie, K.B., and Paul, J.H. (2010). High frequency of horizontal gene transfer in the oceans. Science 330, 50.20929803
[20] Moellering, R.C. Jr. (2010). NDM-1—a cause for worldwide concern. N Engl J Med 363, 2377–2379 .21158655
[21] Oh, H.M., Giovannoni, S.J., Ferriera, S., Johnson, J., and Cho, J.C. (2009). Complete genome sequence of Erythrobacter litoralis HTCC2594. J Bacteriol 191, 2419–2420 .19168610
[22] Periyannan, G.R., Costello, A.L., Tierney, D.L., Yang, K.W., Bennett, B., and Crowder, M.W. (2006). Sequential binding of cobalt(II) to metallo-beta-lactamase CcrA. Biochemistry 45, 1313–1320 .16430228
[23] Poirel, L., Al Maskari, Z., Al Rashdi, F., Bernabeu, S., and Nordmann, P. (2011a). NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. J Antimicrob Chemother 66, 304–306
[24] Poirel, L., Héritier, C., and Nordmann, P. (2005). Genetic and biochemical characterization of the chromosome-encoded class B beta-lactamases from Shewanella livingstonensis (SLB-1) and Shewanella frigidimarina (SFB-1). J Antimicrob Chemother 55, 680–685 .15772146
[25] Poirel, L., K?mpfer, P., and Nordmann, P. (2002). Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 46, 4038–4040 .12435721
[26] Poirel, L., Lagrutta, E., Taylor, P., Pham, J., and Nordmann, P. (2010). Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother 54, 4914–4916 .20823289
[27] Poirel, L., Revathi, G., Bernabeu, S., and Nordmann, P. (2011b). Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 55, 934–936
[28] Poirel, L., Ros, A., Carricajo, A., Berthelot, P., Pozzetto, B., Bernabeu, S., and Nordmann, P. (2011c). Extremely drug-resistant Citrobacter freundii identified in a patient returning from India and producing NDM-1 and other carbapenemases. Antimicrob Agents Chemother 55, 447–448 .
[29] Rolain, J.M., Parola, P., and Cornaglia, G. (2010). New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 12:1699–1701 .
[30] Samuelsen, O., Thilesen, C.M., Heggelund, L., Vada, A.N., Kummel, A., and Sundsfjord, A. (2011). Identification of NDM-1-producing Enterobacteriaceae in Norway. J Antimicrob Chemother 66, 670–672 .
[31] Schlesner, H., Bartels, C., Sittig, M., Dorsch, M., and Stackebrandt, E. (1990). Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 40, 443–451 .2275859
[32] Scrofani, S.D., Chung, J., Huntley, J.J., Benkovic, S.J., Wright, P.E., and Dyson, H.J. (1999). NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 38, 14507–14514 .10545172
[33] Toth, M., Smith, C., Frase, H., Mobashery, S., and Vakulenko, S. (2010). An antibiotic-resistance enzyme from a deep-sea bacterium. J Am Chem Soc 132, 816–823 .20000704
[34] Walsh, T.R. (2010). Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 36, S8–S14 .21129630
[35] Wright, G.D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5, 175–186 .17277795
[36] Wright, G.D. (2010). Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13, 589–594 .20850375
[37] Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K., and Walsh, T.R. (2009). Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53, 5046–5054 .19770275
[38] Zhang, X. (2010). Human in check: new threat from superbugs equipped with NDM-1. Protein Cell 1, 1051–1052 .