[1] Armesilla, A.L., Williams, J.C., Buch, M.H., Pickard, A., Emerson, M., Cartwright, E.J., Oceandy, D., Vos, M.D., Gillies, S., Clark, G.J., (2004). Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem 279, 31318–31328 .15145946
[2] Asha, H., de Ruiter, N.D., Wang, M.G., and Hariharan, I.K. (1999). The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J 18, 605–615 .9927420
[3] Bailly, E., and Bornens, M. (1992). Cell biology. Centrosome and cell division. Nature 355, 300–301 .1731242
[4] Béranger, F., Goud, B., Tavitian, A., and de Gunzburg, J. (1991). Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc Natl Acad Sci U S A 88, 1606–1610 .1900364
[5] Boettner, B., Govek, E.E., Cross, J., and Van Aelst, L. (2000). The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci U S A 97, 9064–9069 .10922060
[6] Borland, G., Gupta, M., Magiera, M.M., Rundell, C.J., Fuld, S., and Yarwood, S.J. (2006). Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting. Mol Pharmacol 69, 374–384 .16244178
[7] Bos, J.L., de Rooij, J., and Reedquist, K.A. (2001). Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2, 369–377 .11331911
[8] Brinkley, W. (1997). Microtubules: a brief historical perspective. J Struct Biol 118, 84–86 .9126634
[9] Burney, T.L., Rockove, S., Eiseman, J.L., Jacobs, S.C., and Kyprianou, N. (1994). Partial growth suppression of human prostate cancer cells by the Krev-1 suppressor gene. Prostate 25, 177–188 .8084835
[10] Chou, Y.H., Flitney, F.W., Chang, L., Mendez, M., Grin, B., and Goldman, R.D. (2007). The motility and dynamic properties of intermediate filaments and their constituent proteins. Exp Cell Res 313, 2236–2243 .17498691
[11] D’Silva, N.J., Jacobson, K.L., Ott, S.M., and Watson, E.L. (1998). Beta-adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. Am J Physiol 274, C1667–C1673 .9611133
[12] Dallol, A., Agathanggelou, A., Fenton, S.L., Ahmed-Choudhury, J., Hesson, L., Vos, M.D., Clark, G.J., Downward, J., Maher, E.R., and Latif, F. (2004). RASSF1A interacts with microtubule- associated proteins and modulates microtubule dynamics. Cancer Res 64, 4112–4116 .15205320
[13] Damak, S., Harnboonsong, Y., George, P.M., and Bullock, D.W. (1996). Expression of human Krev-1 gene in lungs of transgenic mice and subsequent reduction in multiplicity of ethyl carbamate-induced lung adenomas. Mol Carcinog 17, 84–91 .8890957
[14] Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G.P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat Genet 25, 315–319 .10888881
[15] Dammann, R., Schagdarsurengin, U., Seidel, C., Strunnikova, M., Rastetter, M., Baier, K., and Pfeifer, G.P. (2005). The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20, 645–663 .15736067
[16] Downing, K.H. (2000). Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16, 89–111 .11031231
[17] Franke, B., Akkerman, J.W., and Bos, J.L. (1997). Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J 16, 252–259 .9029146
[18] Gupta, M., and Yarwood, S.J. (2005). MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem 280, 8109–8116 .15591041
[19] Hariharan, I.K., Carthew, R.W., and Rubin, G.M. (1991). The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell 67, 717–722 .1934069
[20] Herrmann, C., Horn, G., Spaargaren, M., and Wittinghofer, A. (1996). Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271, 6794–6800 .8636102
[21] Hogue, C.W. (1997). Cn3D: a new generation of three-dimensional molecular structure viewer. Trends Biochem Sci 22, 314–316 .9270306
[22] Huang, L., Weng, X., Hofer, F., Martin, G.S., and Kim, S.H. (1997). Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat Struct Biol 4, 609–615 .9253406
[23] Jelinek, M.A., and Hassell, J.A. (1992). Reversion of middle T antigen-transformed Rat-2 cells by Krev-1: implications for the role of p21c-ras in polyomavirus-mediated transformation. Oncogene 7, 1687–1698 .1380149
[24] Katagiri, K., Imamura, M., and Kinashi, T. (2006). Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7, 919–928 .16892067
[25] Katagiri, K., Maeda, A., Shimonaka, M., and Kinashi, T. (2003). RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4, 741–748 .12845325
[26] Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X.F., Seed, B., and Avruch, J. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12, 253– 265 .11864565
[27] Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989). A ras-related gene with transformation suppressor activity. Cell 56, 77–84 .2642744
[28] Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55 , 29–32.
[29] Lafuente, E.M., van Puijenbroek, A.A., Krause, M., Carman, C.V., Freeman, G.J., Berezovskaya, A., Constantine, E., Springer, T.A., Gertler, F.B., and Boussiotis, V.A. (2004). RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 7, 585–595 .15469846
[30] Lapetina, E.G., Lacal, J.C., Reep, B.R., and Molina y Vedia, L. (1989). A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci U S A 86, 3131–3134 .2470091
[31] Leach, S.D., Berger, D.H., Davidson, B.S., Curley, S.A., and Tainsky, M.A. (1998). Enhanced Krev-1 expression inhibits the growth of pancreatic adenocarcinoma cells. Pancreas 16, 491–498 .9598810
[32] Lerman, M.I., and Minna, J.D. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 60, 6116–6133 .11085536
[33] Liao, G., and Gundersen, G.G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273, 9797–9803 .9545318
[34] Liu, L., Tommasi, S., Lee, D.H., Dammann, R., and Pfeifer, G.P. (2003). Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22, 8125–8136 .14603253
[35] Liu, Z., Vong, Q.P., and Zheng, Y. (2007). CLASPing microtubules at the trans-Golgi network. Dev Cell 12, 839–840 .17543853
[36] Maridonneau-Parini, I., and de Gunzburg, J. (1992). Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem 267, 6396–6402 .1556142
[37] Mitra, R.S., Zhang, Z., Henson, B.S., Kurnit, D.M., Carey, T.E., and D’Silva, N.J. (2003). Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene 22, 6243–6256 .13679863
[38] Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M. (2001). Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 .11429608
[39] Mollinedo, F., and Gajate, C. (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8, 413–450 .12975575
[40] Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, R., and Wittinghofer, A. (1996). Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol 3, 723–729 .8756332
[41] Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995). The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 .7791872
[42] Pizon, V., Desjardins, M., Bucci, C., Parton, R.G., and Zerial, M. (1994). Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci 107, 1661–1670 .7962206
[43] Polesello, C., Huelsmann, S., Brown, N.H., and Tapon, N. (2006). The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 16, 2459–2465 .17174922
[44] Prahlad, V., Yoon, M., Moir, R.D., Vale, R.D., and Goldman, R.D. (1998). Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143, 159–170 .9763428
[45] Quinn, M.T., Mullen, M.L., Jesaitis, A.J., and Linner, J.G. (1992). Subcellular distribution of the Rap1A protein in human neutrophils: colocalization and cotranslocation with cytochrome b559. Blood 79, 1563–1573 .1312373
[46] Robbins, E., and Gonatas, N.K. (1964). The Ultrastructure of a Mammalian Cell During the Mitotic Cycle. J Cell Biol 21, 429–463 .14189913
[47] Rong, R., Jin, W., Zhang, J., Sheikh, M.S., and Huang, Y. (2004). Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 23, 8216–8230 .15378022
[48] Sato, K.Y., Polakis, P.G., Haubruck, H., Fasching, C.L., McCormick, F., and Stanbridge, E.J. (1994). Analysis of the tumor suppressor activity of the K-rev-1 gene in human tumor cell lines. Cancer Res 54, 552–559 .8275494
[49] Sekido, Y., Ahmadian, M., Wistuba, I.I., Latif, F., Bader, S., Wei, M.H., Duh, F.M., Gazdar, A.F., Lerman, M.I., and Minna, J.D. (1998). Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene 16, 3151–3157 .9671394
[50] Shindyalov, I.N., and Bourne, P.E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739–747 .9796821
[51] Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R., and White, M.A. (2002). The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22, 4309–4318 .12024041
[52] Song, M.S., Song, S.J., Ayad, N.G., Chang, J.S., Lee, J.H., Hong, H.K., Lee, H., Choi, N., Kim, J., Kim, H., (2004). The tumor suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6, 129–137 .14743218
[53] Thyberg, J., and Moskalewski, S. (1985). Microtubules and the organization of the Golgi complex. Exp Cell Res 159, 1–16 .3896822
[54] Thyberg, J., and Moskalewski, S. (1999). Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246, 263–279 .9925741
[55] Tommasi, S., Dammann, R., Zhang, Z., Wang, Y., Liu, L., Tsark, W.M., Wilczynski, S.P., Li, J., You, M., and Pfeifer, G.P. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65, 92–98 .15665283
[56] Verma, S.K., Ganesan, T.S., and Parker, P.J. (2008). The tumor suppressor RASSF1A is a novel substrate of PKC. FEBS Lett 582, 2270–2276 .18514071
[57] Vetter, I.R., Linnemann, T., Wohlgemuth, S., Geyer, M., Kalbitzer, H.R., Herrmann, C., and Wittinghofer, A. (1999). Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett 451, 175–180 .10371160
[58] Vos, M.D., Ellis, C.A., Bell, A., Birrer, M.J., and Clark, G.J. (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275, 35669–35672 .10998413
[59] Zhang, Z., Rehmann, H., Price, L.S., Riedl, J., and Bos, J.L. (2005). AF6 negatively regulates Rap1-induced cell adhesion. J Biol Chem 280, 33200–33205 .16051602