The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A

Sunil K. Verma1,2,3,5, Trivadi S. Ganesan1,2,6, Uday Kishore7, Peter J. Parker3,4()

PDF(862 KB)
PDF(862 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (3) : 237-249. DOI: 10.1007/s13238-011-1028-z
RESEARCH ARTICLE
RESEARCH ARTICLE

The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A

  • Sunil K. Verma1,2,3,5, Trivadi S. Ganesan1,2,6, Uday Kishore7, Peter J. Parker3,4()
Author information +
History +

Abstract

Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation, adhesion, differentiation, and embryogenesis. The downstream effectors through which Rap1A mediates its diverse effects are largely unknown. Here we show that Rap1A, but not the related small G proteins Rap2 or Ras, binds the tumor suppressor Ras association domain family 1A (RASSF1A) in a manner that is regulated by phosphorylation of RASSF1A. Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.

Keywords

RASSF1A / Rap1A / microtubule / vimentin / protein-protein interaction

Cite this article

Download citation ▾
Sunil K. Verma, Trivadi S. Ganesan, Uday Kishore, Peter J. Parker. The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A. Prot Cell, 2011, 2(3): 237‒249 https://doi.org/10.1007/s13238-011-1028-z

References

[1] Armesilla, A.L., Williams, J.C., Buch, M.H., Pickard, A., Emerson, M., Cartwright, E.J., Oceandy, D., Vos, M.D., Gillies, S., Clark, G.J., (2004). Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem 279, 31318–31328 .15145946
[2] Asha, H., de Ruiter, N.D., Wang, M.G., and Hariharan, I.K. (1999). The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J 18, 605–615 .9927420
[3] Bailly, E., and Bornens, M. (1992). Cell biology. Centrosome and cell division. Nature 355, 300–301 .1731242
[4] Béranger, F., Goud, B., Tavitian, A., and de Gunzburg, J. (1991). Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc Natl Acad Sci U S A 88, 1606–1610 .1900364
[5] Boettner, B., Govek, E.E., Cross, J., and Van Aelst, L. (2000). The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci U S A 97, 9064–9069 .10922060
[6] Borland, G., Gupta, M., Magiera, M.M., Rundell, C.J., Fuld, S., and Yarwood, S.J. (2006). Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting. Mol Pharmacol 69, 374–384 .16244178
[7] Bos, J.L., de Rooij, J., and Reedquist, K.A. (2001). Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2, 369–377 .11331911
[8] Brinkley, W. (1997). Microtubules: a brief historical perspective. J Struct Biol 118, 84–86 .9126634
[9] Burney, T.L., Rockove, S., Eiseman, J.L., Jacobs, S.C., and Kyprianou, N. (1994). Partial growth suppression of human prostate cancer cells by the Krev-1 suppressor gene. Prostate 25, 177–188 .8084835
[10] Chou, Y.H., Flitney, F.W., Chang, L., Mendez, M., Grin, B., and Goldman, R.D. (2007). The motility and dynamic properties of intermediate filaments and their constituent proteins. Exp Cell Res 313, 2236–2243 .17498691
[11] D’Silva, N.J., Jacobson, K.L., Ott, S.M., and Watson, E.L. (1998). Beta-adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. Am J Physiol 274, C1667–C1673 .9611133
[12] Dallol, A., Agathanggelou, A., Fenton, S.L., Ahmed-Choudhury, J., Hesson, L., Vos, M.D., Clark, G.J., Downward, J., Maher, E.R., and Latif, F. (2004). RASSF1A interacts with microtubule- associated proteins and modulates microtubule dynamics. Cancer Res 64, 4112–4116 .15205320
[13] Damak, S., Harnboonsong, Y., George, P.M., and Bullock, D.W. (1996). Expression of human Krev-1 gene in lungs of transgenic mice and subsequent reduction in multiplicity of ethyl carbamate-induced lung adenomas. Mol Carcinog 17, 84–91 .8890957
[14] Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G.P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat Genet 25, 315–319 .10888881
[15] Dammann, R., Schagdarsurengin, U., Seidel, C., Strunnikova, M., Rastetter, M., Baier, K., and Pfeifer, G.P. (2005). The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20, 645–663 .15736067
[16] Downing, K.H. (2000). Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16, 89–111 .11031231
[17] Franke, B., Akkerman, J.W., and Bos, J.L. (1997). Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J 16, 252–259 .9029146
[18] Gupta, M., and Yarwood, S.J. (2005). MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem 280, 8109–8116 .15591041
[19] Hariharan, I.K., Carthew, R.W., and Rubin, G.M. (1991). The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell 67, 717–722 .1934069
[20] Herrmann, C., Horn, G., Spaargaren, M., and Wittinghofer, A. (1996). Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271, 6794–6800 .8636102
[21] Hogue, C.W. (1997). Cn3D: a new generation of three-dimensional molecular structure viewer. Trends Biochem Sci 22, 314–316 .9270306
[22] Huang, L., Weng, X., Hofer, F., Martin, G.S., and Kim, S.H. (1997). Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat Struct Biol 4, 609–615 .9253406
[23] Jelinek, M.A., and Hassell, J.A. (1992). Reversion of middle T antigen-transformed Rat-2 cells by Krev-1: implications for the role of p21c-ras in polyomavirus-mediated transformation. Oncogene 7, 1687–1698 .1380149
[24] Katagiri, K., Imamura, M., and Kinashi, T. (2006). Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7, 919–928 .16892067
[25] Katagiri, K., Maeda, A., Shimonaka, M., and Kinashi, T. (2003). RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4, 741–748 .12845325
[26] Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X.F., Seed, B., and Avruch, J. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12, 253– 265 .11864565
[27] Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989). A ras-related gene with transformation suppressor activity. Cell 56, 77–84 .2642744
[28] Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55 , 29–32.
[29] Lafuente, E.M., van Puijenbroek, A.A., Krause, M., Carman, C.V., Freeman, G.J., Berezovskaya, A., Constantine, E., Springer, T.A., Gertler, F.B., and Boussiotis, V.A. (2004). RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 7, 585–595 .15469846
[30] Lapetina, E.G., Lacal, J.C., Reep, B.R., and Molina y Vedia, L. (1989). A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci U S A 86, 3131–3134 .2470091
[31] Leach, S.D., Berger, D.H., Davidson, B.S., Curley, S.A., and Tainsky, M.A. (1998). Enhanced Krev-1 expression inhibits the growth of pancreatic adenocarcinoma cells. Pancreas 16, 491–498 .9598810
[32] Lerman, M.I., and Minna, J.D. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 60, 6116–6133 .11085536
[33] Liao, G., and Gundersen, G.G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273, 9797–9803 .9545318
[34] Liu, L., Tommasi, S., Lee, D.H., Dammann, R., and Pfeifer, G.P. (2003). Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22, 8125–8136 .14603253
[35] Liu, Z., Vong, Q.P., and Zheng, Y. (2007). CLASPing microtubules at the trans-Golgi network. Dev Cell 12, 839–840 .17543853
[36] Maridonneau-Parini, I., and de Gunzburg, J. (1992). Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem 267, 6396–6402 .1556142
[37] Mitra, R.S., Zhang, Z., Henson, B.S., Kurnit, D.M., Carey, T.E., and D’Silva, N.J. (2003). Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene 22, 6243–6256 .13679863
[38] Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M. (2001). Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 .11429608
[39] Mollinedo, F., and Gajate, C. (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8, 413–450 .12975575
[40] Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, R., and Wittinghofer, A. (1996). Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol 3, 723–729 .8756332
[41] Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995). The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 .7791872
[42] Pizon, V., Desjardins, M., Bucci, C., Parton, R.G., and Zerial, M. (1994). Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci 107, 1661–1670 .7962206
[43] Polesello, C., Huelsmann, S., Brown, N.H., and Tapon, N. (2006). The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 16, 2459–2465 .17174922
[44] Prahlad, V., Yoon, M., Moir, R.D., Vale, R.D., and Goldman, R.D. (1998). Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143, 159–170 .9763428
[45] Quinn, M.T., Mullen, M.L., Jesaitis, A.J., and Linner, J.G. (1992). Subcellular distribution of the Rap1A protein in human neutrophils: colocalization and cotranslocation with cytochrome b559. Blood 79, 1563–1573 .1312373
[46] Robbins, E., and Gonatas, N.K. (1964). The Ultrastructure of a Mammalian Cell During the Mitotic Cycle. J Cell Biol 21, 429–463 .14189913
[47] Rong, R., Jin, W., Zhang, J., Sheikh, M.S., and Huang, Y. (2004). Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 23, 8216–8230 .15378022
[48] Sato, K.Y., Polakis, P.G., Haubruck, H., Fasching, C.L., McCormick, F., and Stanbridge, E.J. (1994). Analysis of the tumor suppressor activity of the K-rev-1 gene in human tumor cell lines. Cancer Res 54, 552–559 .8275494
[49] Sekido, Y., Ahmadian, M., Wistuba, I.I., Latif, F., Bader, S., Wei, M.H., Duh, F.M., Gazdar, A.F., Lerman, M.I., and Minna, J.D. (1998). Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene 16, 3151–3157 .9671394
[50] Shindyalov, I.N., and Bourne, P.E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739–747 .9796821
[51] Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R., and White, M.A. (2002). The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22, 4309–4318 .12024041
[52] Song, M.S., Song, S.J., Ayad, N.G., Chang, J.S., Lee, J.H., Hong, H.K., Lee, H., Choi, N., Kim, J., Kim, H., (2004). The tumor suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6, 129–137 .14743218
[53] Thyberg, J., and Moskalewski, S. (1985). Microtubules and the organization of the Golgi complex. Exp Cell Res 159, 1–16 .3896822
[54] Thyberg, J., and Moskalewski, S. (1999). Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246, 263–279 .9925741
[55] Tommasi, S., Dammann, R., Zhang, Z., Wang, Y., Liu, L., Tsark, W.M., Wilczynski, S.P., Li, J., You, M., and Pfeifer, G.P. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65, 92–98 .15665283
[56] Verma, S.K., Ganesan, T.S., and Parker, P.J. (2008). The tumor suppressor RASSF1A is a novel substrate of PKC. FEBS Lett 582, 2270–2276 .18514071
[57] Vetter, I.R., Linnemann, T., Wohlgemuth, S., Geyer, M., Kalbitzer, H.R., Herrmann, C., and Wittinghofer, A. (1999). Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett 451, 175–180 .10371160
[58] Vos, M.D., Ellis, C.A., Bell, A., Birrer, M.J., and Clark, G.J. (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275, 35669–35672 .10998413
[59] Zhang, Z., Rehmann, H., Price, L.S., Riedl, J., and Bos, J.L. (2005). AF6 negatively regulates Rap1-induced cell adhesion. J Biol Chem 280, 33200–33205 .16051602
AI Summary AI Mindmap
PDF(862 KB)

Accesses

Citations

Detail

Sections
Recommended

/