[1] Abu Khweek, A., Fetherston, J.D., and Perry, R.D. (2010). Analysis of HmsH and its role in plague biofilm formation. Microbiology 156, 1424–1438 .20093287
[2] Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E. (1999). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048 .10570195
[3] Bobrov, A.G., Kirillina, O., Forman, S., Mack, D., and Perry, R.D. (2008). Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 10, 1419–1432 .18279344
[4] Bobrov, A.G., Kirillina, O., and Perry, R.D. (2005). The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247, 123–130 .15935569
[5] Bobrov, A.G., Kirillina, O., Ryjenkov, D.A., Waters, C.M., Price, P.A., Fetherston, J.D., Mack, D., Goldman, W.E., Gomelsky, M., and Perry, R.D. (2011). Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79, 533–551 .21219468
[6] Chain, P.S., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., Georgescu, A.M., Vergez, L.M., Land, M.L., Motin, V.L., (2004). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831 .15358858
[7] Darby, C. (2008). Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol 16, 158–164 .18339547
[8] Darby, C., Ananth, S.L., Tan, L., and Hinnebusch, B.J. (2005). Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73, 7236–7242 .16239518
[9] Darby, C., Hsu, J.W., Ghori, N., and Falkow, S. (2002). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244 .12015591
[10] Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2, 114–122 .12563302
[11] Donlan, R.M., and Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–193 .11932229
[12] Drace, K., and Darby, C. (2008). The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 74, 4509–4515 .18515487
[13] Eisen, R.J., Bearden, S.W., Wilder, A.P., Montenieri, J.A., Antolin, M.F., and Gage, K.L. (2006). Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103, 15380–15385 .17032761
[14] Eisen, R.J., Borchert, J.N., Holmes, J.L., Amatre, G., Van Wyk, K., Enscore, R.E., Babi, N., Atiku, L.A., Wilder, A.P., Vetter, S.M., (2008). Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 78, 949–956 .18541775
[15] Eisen, R.J., and Gage, K.L. (2009). Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40, 1.18803931
[16] Erickson, D.L., Jarrett, C.O., Callison, J.A., Fischer, E.R., and Hinnebusch, B.J. (2008). Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J Bacteriol 190: 8163–8170
[17] Erickson, D.L., Jarrett, C.O., Wren, B.W., and Hinnebusch, B.J. (2006a). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188, 1113–1119 .16428415
[18] Erickson, D.L., Jarrett, C.O., Wren, B.W., and Hinnebusch, B.J. (2006b). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188, 1113–1119 .16428415
[19] Flemming, H.C., and Wingender, J. (2010). The biofilm matrix. Nat Rev Microbiol 8, 623–633 .20676145
[20] Forman, S., Bobrov, A.G., Kirillina, O., Craig, S.K., Abney, J., Fetherston, J.D., and Perry, R.D. (2006). Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152, 3399–3410 .17074909
[21] Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends Microbiol 13, 34–40 .15639630
[22] Grabenstein, J.P., Fukuto, H.S., Palmer, L.E., and Bliska, J.B. (2006). Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 74, 3727–3741 .16790745
[23] Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108 .15040259
[24] Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263–273 .19287449
[25] Hinnebusch, B.J., and Erickson, D.L. (2008). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322, 229–248 .18453279
[26] Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G., and Forsberg, A. (2002). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 .11976454
[27] Joshua, G.W., Karlyshev, A.V., Smith, M.P., Isherwood, K.E., Titball, R.W., and Wren, B.W. (2003). A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 3221–3229 .14600234
[28] Kirillina, O., Fetherston, J.D., Bobrov, A.G., Abney, J., and Perry, R.D. (2004). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88 .15458406
[29] Li, Y.L., Gao, H., Qin, L., Li, B., Han, Y.P., Guo, Z.B., Song, Y.J., Zhai, J.H., Du, Z.M., Wang, X.Y., (2008). Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus. BMC Genomics 9, 143.18366809
[30] Lorange, E.A., Race, B.L., Sebbane, F., and Joseph Hinnebusch, B. (2005). Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191, 1907–1912 .15871125
[31] Lukaszewski, R.A., Kenny, D.J., Taylor, R., Rees, D.G., Hartley, M.G., and Oyston, P.C. (2005). Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 73, 7142–7150 .16239508
[32] Majdalani, N., and Gottesman, S. (2005). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59, 379–405 .16153174
[33] Matthysse, A.G., Stretton, S., Dandie, C., McClure, N.C., and Goodman, A.E. (1996). Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett 145, 87–94 .8931331
[34] Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., (2001). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 .11586360
[35] Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D., and Oliveira, M.A. (2006). Polyamines are essential for the formation of plague biofilm. J Bacteriol 188, 2355–2363 .16547021
[36] Perry, R.D., and Fetherston, J.D. (1997). Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10, 35–66 .8993858
[37] Schirmer, T., and Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7, 724–735 .19756011
[38] Simm, R., Fetherston, J.D., Kader, A., R?mling, U., and Perry, R.D. (2005). Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187, 6816–6823 .16166544
[39] Sun, Y.C., Hinnebusch, B.J., and Darby, C. (2008). Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105, 8097–8101 .18523005
[40] Sun, Y.C., Koumoutsi, A., and Darby, C. (2009). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 290, 85–90 .19025559
[41] Tan, L., and Darby, C. (2004). A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol 186, 5087–5092 .15262945
[42] Tan, L., and Darby, C. (2005). Yersinia pestis is viable with endotoxin composed of only lipid A. J Bacteriol 187, 6599–6600 .16159798
[43] Tan, L., and Darby, C. (2006). Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61, 861–870 .16817907
[44] Vetter, S.M., Eisen, R.J., Schotthoefer, A.M., Montenieri, J.A., Holmes, J.L., Bobrov, A.G., Bearden, S.W., Perry, R.D., and Gage, K.L. (2010). Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology 156, 2216–2225 .20395271
[45] Wortham, B.W., Oliveira, M.A., Fetherston, J.D., and Perry, R.D. (2010). Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 12, 2034–2047 .20406298