Formation and regulation of Yersinia biofilms

Dongsheng Zhou(), Ruifu Yang()

PDF(223 KB)
PDF(223 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (3) : 173-179. DOI: 10.1007/s13238-011-1024-3
REVIEW
REVIEW

Formation and regulation of Yersinia biofilms

  • Dongsheng Zhou(), Ruifu Yang()
Author information +
History +

Abstract

Flea-borne transmission is a recent evolutionary adaptation that distinguishes the deadly Yersinia pestis from its progenitor Y. pseudotuberculosis, a mild pathogen transmitted via the food-borne route. Y. pestis synthesizes biofilms in the flea gut, which is important for flea-borne transmission. Yersinia biofilms are bacterial colonies surrounded by extracellular matrix primarily containing a homopolymer of N-acetyl-D-glucosamine that are synthesized by a set of specific enzymes. Yersinia biofilm production is tightly regulated at both transcriptional and post-transcriptional levels. All the known structural genes responsible for biofilm production are harbored in both Y. pseudotuberculosis and Y. pestis, but Y. pestis has evolved changes in the regulation of biofilm development, thereby acquiring efficient arthropod-borne transmission.

Keywords

Yersinia pestis / Y. pseudotuberculosis / biofilm / flea-borne transmission

Cite this article

Download citation ▾
Dongsheng Zhou, Ruifu Yang. Formation and regulation of Yersinia biofilms. Prot Cell, 2011, 2(3): 173‒179 https://doi.org/10.1007/s13238-011-1024-3

References

[1] Abu Khweek, A., Fetherston, J.D., and Perry, R.D. (2010). Analysis of HmsH and its role in plague biofilm formation. Microbiology 156, 1424–1438 .20093287
[2] Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E. (1999). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048 .10570195
[3] Bobrov, A.G., Kirillina, O., Forman, S., Mack, D., and Perry, R.D. (2008). Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 10, 1419–1432 .18279344
[4] Bobrov, A.G., Kirillina, O., and Perry, R.D. (2005). The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247, 123–130 .15935569
[5] Bobrov, A.G., Kirillina, O., Ryjenkov, D.A., Waters, C.M., Price, P.A., Fetherston, J.D., Mack, D., Goldman, W.E., Gomelsky, M., and Perry, R.D. (2011). Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79, 533–551 .21219468
[6] Chain, P.S., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., Georgescu, A.M., Vergez, L.M., Land, M.L., Motin, V.L., (2004). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831 .15358858
[7] Darby, C. (2008). Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol 16, 158–164 .18339547
[8] Darby, C., Ananth, S.L., Tan, L., and Hinnebusch, B.J. (2005). Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73, 7236–7242 .16239518
[9] Darby, C., Hsu, J.W., Ghori, N., and Falkow, S. (2002). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244 .12015591
[10] Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2, 114–122 .12563302
[11] Donlan, R.M., and Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–193 .11932229
[12] Drace, K., and Darby, C. (2008). The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 74, 4509–4515 .18515487
[13] Eisen, R.J., Bearden, S.W., Wilder, A.P., Montenieri, J.A., Antolin, M.F., and Gage, K.L. (2006). Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103, 15380–15385 .17032761
[14] Eisen, R.J., Borchert, J.N., Holmes, J.L., Amatre, G., Van Wyk, K., Enscore, R.E., Babi, N., Atiku, L.A., Wilder, A.P., Vetter, S.M., (2008). Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 78, 949–956 .18541775
[15] Eisen, R.J., and Gage, K.L. (2009). Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40, 1.18803931
[16] Erickson, D.L., Jarrett, C.O., Callison, J.A., Fischer, E.R., and Hinnebusch, B.J. (2008). Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J Bacteriol 190: 8163–8170
[17] Erickson, D.L., Jarrett, C.O., Wren, B.W., and Hinnebusch, B.J. (2006a). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188, 1113–1119 .16428415
[18] Erickson, D.L., Jarrett, C.O., Wren, B.W., and Hinnebusch, B.J. (2006b). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188, 1113–1119 .16428415
[19] Flemming, H.C., and Wingender, J. (2010). The biofilm matrix. Nat Rev Microbiol 8, 623–633 .20676145
[20] Forman, S., Bobrov, A.G., Kirillina, O., Craig, S.K., Abney, J., Fetherston, J.D., and Perry, R.D. (2006). Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152, 3399–3410 .17074909
[21] Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends Microbiol 13, 34–40 .15639630
[22] Grabenstein, J.P., Fukuto, H.S., Palmer, L.E., and Bliska, J.B. (2006). Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 74, 3727–3741 .16790745
[23] Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108 .15040259
[24] Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263–273 .19287449
[25] Hinnebusch, B.J., and Erickson, D.L. (2008). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322, 229–248 .18453279
[26] Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G., and Forsberg, A. (2002). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 .11976454
[27] Joshua, G.W., Karlyshev, A.V., Smith, M.P., Isherwood, K.E., Titball, R.W., and Wren, B.W. (2003). A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 3221–3229 .14600234
[28] Kirillina, O., Fetherston, J.D., Bobrov, A.G., Abney, J., and Perry, R.D. (2004). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88 .15458406
[29] Li, Y.L., Gao, H., Qin, L., Li, B., Han, Y.P., Guo, Z.B., Song, Y.J., Zhai, J.H., Du, Z.M., Wang, X.Y., (2008). Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus. BMC Genomics 9, 143.18366809
[30] Lorange, E.A., Race, B.L., Sebbane, F., and Joseph Hinnebusch, B. (2005). Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191, 1907–1912 .15871125
[31] Lukaszewski, R.A., Kenny, D.J., Taylor, R., Rees, D.G., Hartley, M.G., and Oyston, P.C. (2005). Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 73, 7142–7150 .16239508
[32] Majdalani, N., and Gottesman, S. (2005). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59, 379–405 .16153174
[33] Matthysse, A.G., Stretton, S., Dandie, C., McClure, N.C., and Goodman, A.E. (1996). Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett 145, 87–94 .8931331
[34] Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., (2001). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 .11586360
[35] Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D., and Oliveira, M.A. (2006). Polyamines are essential for the formation of plague biofilm. J Bacteriol 188, 2355–2363 .16547021
[36] Perry, R.D., and Fetherston, J.D. (1997). Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10, 35–66 .8993858
[37] Schirmer, T., and Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7, 724–735 .19756011
[38] Simm, R., Fetherston, J.D., Kader, A., R?mling, U., and Perry, R.D. (2005). Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187, 6816–6823 .16166544
[39] Sun, Y.C., Hinnebusch, B.J., and Darby, C. (2008). Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105, 8097–8101 .18523005
[40] Sun, Y.C., Koumoutsi, A., and Darby, C. (2009). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 290, 85–90 .19025559
[41] Tan, L., and Darby, C. (2004). A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol 186, 5087–5092 .15262945
[42] Tan, L., and Darby, C. (2005). Yersinia pestis is viable with endotoxin composed of only lipid A. J Bacteriol 187, 6599–6600 .16159798
[43] Tan, L., and Darby, C. (2006). Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61, 861–870 .16817907
[44] Vetter, S.M., Eisen, R.J., Schotthoefer, A.M., Montenieri, J.A., Holmes, J.L., Bobrov, A.G., Bearden, S.W., Perry, R.D., and Gage, K.L. (2010). Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology 156, 2216–2225 .20395271
[45] Wortham, B.W., Oliveira, M.A., Fetherston, J.D., and Perry, R.D. (2010). Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 12, 2034–2047 .20406298
AI Summary AI Mindmap
PDF(223 KB)

Accesses

Citations

Detail

Sections
Recommended

/