[1] Abolhassani, N., Iyama, T., Tsuchimoto, D., Sakumi, K., Ohno, M., Behmanesh, M., and Nakabeppu, Y. (2010). NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38, 2891-2903 .20081199
[2] Anderson, J.S., and Parker, R.P. (1998). The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17, 1497-1506 .9482746
[3] Bessman, M.J., Frick, D.N., and O’Handley, S.F. (1996). The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271, 25059-25062 .8810257
[4] Bhatnagar, S.K., Bullions, L.C., and Bessman, M.J. (1991). Characterization of the mutT nucleoside triphosphatase of Escherichia coli. J Biol Chem 266, 9050-9054 .1851162
[5] Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464 .11719186
[6] Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861-890 .15189161
[7] Cougot, N., Babajko, S., and Séraphin, B. (2004a). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40 .15067023
[8] Cougot, N., van Dijk, E., Babajko, S., and Séraphin, B. (2004b). ‘Cap-tabolism’. Trends Biochem Sci 29, 436-444 .15362228
[9] Das, B., Butler, J.S., and Sherman, F. (2003). Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol Cell Biol 23, 5502-5515 .12897126
[10] Das, B., Das, S., and Sherman, F. (2006). Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103, 10871-10876 .16832048
[11] Das, B., Guo, Z., Russo, P., Chartrand, P., and Sherman, F. (2000). The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol 20, 2827-2838 .10733586
[12] Decker, C.J., and Parker, R. (1994). Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci 19, 336-340 .7940679
[13] Dostie, J., Lejbkowicz, F., and Sonenberg, N. (2000). Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J Cell Biol 148, 239-247 .10648556
[14] Dunckley, T., and Parker, R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 18, 5411-5422 .10508173
[15] Dunckley, T., and Parker, R. (2001). Yeast mRNA decapping enzyme. Methods Enzymol 342, 226-233 .11586895
[16] Fenger-Gr?n, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20, 905-915 .16364915
[17] Fisher, D.I., Cartwright, J.L., Harashima, H., Kamiya, H., and McLennan, A.G. (2004). Characterization of a nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5′-diphosphates. BMC Biochem 5, 7.15147580
[18] Garneau, N.L., Wilusz, J., and Wilusz, C.J. (2007). The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8, 113-126 .17245413
[19] Ghosh, T., Peterson, B., Tomasevic, N., and Peculis, B.A. (2004). Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 13, 817-828 .15053875
[20] Gu, M., Fabrega, C., Liu, S.W., Liu, H., Kiledjian, M., and Lima, C.D. (2004). Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 14, 67-80 .15068804
[21] Hori, M., Fujikawa, K., Kasai, H., Harashima, H., and Kamiya, H. (2005). Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair (Amst) 4, 33-39 .15533835
[22] Ito, R., Hayakawa, H., Sekiguchi, M., and Ishibashi, T. (2005). Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry 44, 6670-6674 .15850400
[23] Iyama, T., Abolhassani, N., Tsuchimoto, D., Nonaka, M., and Nakabeppu, Y. (2010). NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38, 4834-4843 .20385596
[24] Kuai, L., Das, B., and Sherman, F. (2005). A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102, 13962-13967 .16166263
[25] Lykke-Andersen, J. (2002). Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22, 8114-8121 .12417715
[26] Meyer, S., Temme, C., and Wahle, E. (2004). Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39, 197-216 .15596551
[27] Mi, S., Li, Y., Yan, J., and Gao, G.F. (2010). Na(+)/K (+)-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci 53, 1098-1105 .21104370
[28] Mildvan, A.S., Xia, Z., Azurmendi, H.F., Saraswat, V., Legler, P.M., Massiah, M.A., Gabelli, S.B., Bianchet, M.A., Kang, L.W., and Amzel, L.M. (2005). Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 433, 129-143 .15581572
[29] Mukherjee, D., Gao, M., O’Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S., and Wilusz, J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21, 165-174 .11782436
[30] Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-127 .14749774
[31] Peculis, B.A., Reynolds, K., and Cleland, M. (2007). Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29K (Nudt16). J Biol Chem 282, 24792-24805 .17567574
[32] Peculis, B.A., and Steitz, J.A. (1993). Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73, 1233-1245 .8513505
[33] Piccirillo, C., Khanna, R., and Kiledjian, M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138-1147 .12923261
[34] Saguez, C., Olesen, J.R., and Jensen, T.H. (2005). Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol 17, 287-293 .15901499
[35] Scarsdale, J.N., Peculis, B.A., and Wright, H.T. (2006). Crystal structures of U8 snoRNA decapping nudix hydrolase, X29, and its metal and cap complexes. Structure 14, 331-343 .16472752
[36] Sharma, S., and Black, D.L. (2006). Maps, codes, and sequence elements: can we predict the protein output from an alternatively spliced locus? Neuron 52, 574-576 .17114042
[37] Song, M.G., Li, Y., and Kiledjian, M. (2010). Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40, 423-432 .21070968
[38] Taylor, M.J., and Peculis, B.A. (2008). Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 36, 6021-6034 .18820299
[39] Tomasevic, N., and Peculis, B. (1999). Identification of a U8 snoRNA-specific binding protein. J Biol Chem 274, 35914-35920 .10585477
[40] Tucker, M., and Parker, R. (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69, 571-595 .10966469
[41] van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E., and Séraphin, B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21, 6915-6924 .12486012
[42] Vasudevan, S., and Peltz, S.W. (2003). Nuclear mRNA surveillance. Curr Opin Cell Biol 15, 332-337 .12787776
[43] Wang, Z., Jiao, X., Carr-Schmid, A., and Kiledjian, M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99, 12663-12668 .12218187
[44] Wang, Z., and Kiledjian, M. (2001). Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751-762 .11747811
[45] Wilusz, C.J., and Wilusz, J. (2004). Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 20, 491-497 .15363903
[46] Zhang, J., Gao, F., Zhang, Q., Chen, Q., Qi, J., and Yan, J. (2008). Crystallization and crystallographic analysis of human NUDT16. Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 639-640 .18607096