hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA

Guangwen Lu1,2, Jie Zhang1, Yan Li1,2, Zhixin Li1,2, Na Zhang1,2, Xiang Xu3, Tingting Wang1, Zhenhong Guan1, George F. Gao1,2,4, Jinghua Yan1()

PDF(369 KB)
PDF(369 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (1) : 64-73. DOI: 10.1007/s13238-011-1009-2
RESEARCH ARTICLE
RESEARCH ARTICLE

hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA

  • Guangwen Lu1,2, Jie Zhang1, Yan Li1,2, Zhixin Li1,2, Na Zhang1,2, Xiang Xu3, Tingting Wang1, Zhenhong Guan1, George F. Gao1,2,4, Jinghua Yan1()
Author information +
History +

Abstract

Human NUDT16 (hNUDT16) is a decapping enzyme initially identified as the human homolog to the Xenopus laevis X29. As a metalloenzyme, hNUDT16 relies on divalent cations for its cap-hydrolysis activity to remove m7GDP and m227GDP from RNAs. Metal also determines substrate specificity of the enzyme. So far, only U8 small nucleolar RNA (snoRNA) has been identified as the substrate of hNUDT16 in the presence of Mg2+. Here we demonstrate that besides U8, hNUDT16 can also actively cleave the m7GDP cap from mRNAs in the presence of Mg2+ or Mn2+. We further show that hNUDT16 does not preferentially recognize U8 or mRNA substrates by our cross-inhibition and quantitative decapping assays. In addition, our mutagenesis analysis identifies several key residues involved in hydrolysis and confirms the key role of the REXXEE motif in catalysis. Finally an investigation into the subcellular localization of hNUDT16 revealed its abundance in both cytoplasm and nucleus. These findings extend the substrate spectrum of hNUDT16 beyond snoRNAs to also include mRNA, demonstrating the pleiotropic decapping activity of hNUDT16.

Keywords

hNUDT16 / mRNA / U8 small nucleolar RNA / decapping activity / substrate specificity / subcellular localization

Cite this article

Download citation ▾
Guangwen Lu, Jie Zhang, Yan Li, Zhixin Li, Na Zhang, Xiang Xu, Tingting Wang, Zhenhong Guan, George F. Gao, Jinghua Yan. hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Prot Cell, 2011, 2(1): 64‒73 https://doi.org/10.1007/s13238-011-1009-2

References

[1] Abolhassani, N., Iyama, T., Tsuchimoto, D., Sakumi, K., Ohno, M., Behmanesh, M., and Nakabeppu, Y. (2010). NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38, 2891-2903 .20081199
[2] Anderson, J.S., and Parker, R.P. (1998). The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17, 1497-1506 .9482746
[3] Bessman, M.J., Frick, D.N., and O’Handley, S.F. (1996). The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271, 25059-25062 .8810257
[4] Bhatnagar, S.K., Bullions, L.C., and Bessman, M.J. (1991). Characterization of the mutT nucleoside triphosphatase of Escherichia coli. J Biol Chem 266, 9050-9054 .1851162
[5] Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464 .11719186
[6] Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861-890 .15189161
[7] Cougot, N., Babajko, S., and Séraphin, B. (2004a). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40 .15067023
[8] Cougot, N., van Dijk, E., Babajko, S., and Séraphin, B. (2004b). ‘Cap-tabolism’. Trends Biochem Sci 29, 436-444 .15362228
[9] Das, B., Butler, J.S., and Sherman, F. (2003). Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol Cell Biol 23, 5502-5515 .12897126
[10] Das, B., Das, S., and Sherman, F. (2006). Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103, 10871-10876 .16832048
[11] Das, B., Guo, Z., Russo, P., Chartrand, P., and Sherman, F. (2000). The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol 20, 2827-2838 .10733586
[12] Decker, C.J., and Parker, R. (1994). Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci 19, 336-340 .7940679
[13] Dostie, J., Lejbkowicz, F., and Sonenberg, N. (2000). Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J Cell Biol 148, 239-247 .10648556
[14] Dunckley, T., and Parker, R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 18, 5411-5422 .10508173
[15] Dunckley, T., and Parker, R. (2001). Yeast mRNA decapping enzyme. Methods Enzymol 342, 226-233 .11586895
[16] Fenger-Gr?n, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20, 905-915 .16364915
[17] Fisher, D.I., Cartwright, J.L., Harashima, H., Kamiya, H., and McLennan, A.G. (2004). Characterization of a nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5′-diphosphates. BMC Biochem 5, 7.15147580
[18] Garneau, N.L., Wilusz, J., and Wilusz, C.J. (2007). The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8, 113-126 .17245413
[19] Ghosh, T., Peterson, B., Tomasevic, N., and Peculis, B.A. (2004). Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 13, 817-828 .15053875
[20] Gu, M., Fabrega, C., Liu, S.W., Liu, H., Kiledjian, M., and Lima, C.D. (2004). Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 14, 67-80 .15068804
[21] Hori, M., Fujikawa, K., Kasai, H., Harashima, H., and Kamiya, H. (2005). Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair (Amst) 4, 33-39 .15533835
[22] Ito, R., Hayakawa, H., Sekiguchi, M., and Ishibashi, T. (2005). Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry 44, 6670-6674 .15850400
[23] Iyama, T., Abolhassani, N., Tsuchimoto, D., Nonaka, M., and Nakabeppu, Y. (2010). NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38, 4834-4843 .20385596
[24] Kuai, L., Das, B., and Sherman, F. (2005). A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102, 13962-13967 .16166263
[25] Lykke-Andersen, J. (2002). Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22, 8114-8121 .12417715
[26] Meyer, S., Temme, C., and Wahle, E. (2004). Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39, 197-216 .15596551
[27] Mi, S., Li, Y., Yan, J., and Gao, G.F. (2010). Na(+)/K (+)-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci 53, 1098-1105 .21104370
[28] Mildvan, A.S., Xia, Z., Azurmendi, H.F., Saraswat, V., Legler, P.M., Massiah, M.A., Gabelli, S.B., Bianchet, M.A., Kang, L.W., and Amzel, L.M. (2005). Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 433, 129-143 .15581572
[29] Mukherjee, D., Gao, M., O’Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S., and Wilusz, J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21, 165-174 .11782436
[30] Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-127 .14749774
[31] Peculis, B.A., Reynolds, K., and Cleland, M. (2007). Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29K (Nudt16). J Biol Chem 282, 24792-24805 .17567574
[32] Peculis, B.A., and Steitz, J.A. (1993). Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73, 1233-1245 .8513505
[33] Piccirillo, C., Khanna, R., and Kiledjian, M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138-1147 .12923261
[34] Saguez, C., Olesen, J.R., and Jensen, T.H. (2005). Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol 17, 287-293 .15901499
[35] Scarsdale, J.N., Peculis, B.A., and Wright, H.T. (2006). Crystal structures of U8 snoRNA decapping nudix hydrolase, X29, and its metal and cap complexes. Structure 14, 331-343 .16472752
[36] Sharma, S., and Black, D.L. (2006). Maps, codes, and sequence elements: can we predict the protein output from an alternatively spliced locus? Neuron 52, 574-576 .17114042
[37] Song, M.G., Li, Y., and Kiledjian, M. (2010). Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40, 423-432 .21070968
[38] Taylor, M.J., and Peculis, B.A. (2008). Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 36, 6021-6034 .18820299
[39] Tomasevic, N., and Peculis, B. (1999). Identification of a U8 snoRNA-specific binding protein. J Biol Chem 274, 35914-35920 .10585477
[40] Tucker, M., and Parker, R. (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69, 571-595 .10966469
[41] van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E., and Séraphin, B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21, 6915-6924 .12486012
[42] Vasudevan, S., and Peltz, S.W. (2003). Nuclear mRNA surveillance. Curr Opin Cell Biol 15, 332-337 .12787776
[43] Wang, Z., Jiao, X., Carr-Schmid, A., and Kiledjian, M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99, 12663-12668 .12218187
[44] Wang, Z., and Kiledjian, M. (2001). Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751-762 .11747811
[45] Wilusz, C.J., and Wilusz, J. (2004). Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 20, 491-497 .15363903
[46] Zhang, J., Gao, F., Zhang, Q., Chen, Q., Qi, J., and Yan, J. (2008). Crystallization and crystallographic analysis of human NUDT16. Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 639-640 .18607096
AI Summary AI Mindmap
PDF(369 KB)

Accesses

Citations

Detail

Sections
Recommended

/