RESEARCH ARTICLE

Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism

  • Sensen Zhang 1 ,
  • Ningning Li 2 ,
  • Wenwen Zeng 3 ,
  • Ning Gao , 2 ,
  • Maojun Yang , 1
Expand
  • 1. Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
  • 2. State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Science, Peking University, Beijing 100871, China
  • 3. Institute for Immunology and School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 11 Sep 2017

Accepted date: 18 Sep 2017

Published date: 30 Nov 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca2+ permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a “move upward” motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca2+, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.

Cite this article

Sensen Zhang , Ningning Li , Wenwen Zeng , Ning Gao , Maojun Yang . Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism[J]. Protein & Cell, 2017 , 8(11) : 834 -847 . DOI: 10.1007/s13238-017-0476-5

1
AhujaM, ParkS, ShinDM, MuallemS (2016) TRPML1 as lysosomal fusion guard.Channels (Austin)10:261–263

DOI

2
AppelqvistH, WasterP, KagedalK, OllingerK (2013) The lysosome: from waste bag to potential therapeutic target.J Mol Cell Biol5:214–226

DOI

3
BachG (2005) Mucolipin 1: endocytosis and cation channel–a review.Pflugers Arch451:313–317

DOI

4
BargalR, AvidanN, Ben-AsherE, OlenderZ, ZeiglerM, FrumkinA, Raas-RothschildA, GlusmanG, LancetD, BachG (2000) Identification of the gene causing mucolipidosis type IV.Nat Genet26:118–123

DOI

5
BargalR, AvidanN, OlenderT, Ben AsherE, ZeiglerM, Raas-RothschildA, FrumkinA, Ben-YosephO, FriedlenderY, Lancet D (2001) Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population.Hum Mutat17:397–402

DOI

6
BenemeiS, PatacchiniR, TrevisaniM, GeppettiP (2015) TRP channels.Curr Opin Pharmacol22:18–23

DOI

7
BermanER, LivniN, ShapiraE, MerinS, LevijIS (1974) Congenital corneal clouding with abnormal systemic storage bodies: a new variant of mucolipidosis.J Pediatr84:519–526

DOI

8
BundeySE, AshenhurstEM, DorstJP (1974) Mucolipidosis, probably a new variant with joint deformity and peripheral nerve dysfunction.Birth Defects Orig Artic Ser10:484–490

9
CaoE, LiaoM, ChengY, JuliusD (2013) TRPV1 structures in distinct conformations reveal activation mechanisms.Nature504:113–118

DOI

10
ChenS, McMullanG, FaruqiAR, MurshudovGN, ShortJM, ScheresSH, HendersonR (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.Ultramicroscopy135:24–35

DOI

11
ChenCC, KellerM, HessM, SchiffmannR, UrbanN, WolfgardtA, SchaeferM, BracherF, BielM,Wahl-SchottC (2014) A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV.Nat Commun5:4681

DOI

12
ChengX, ShenD, SamieM, XuH (2010) Mucolipins: Intracellular TRPML1-3 channels.FEBS Lett584:2013–2021

DOI

13
ChengX, ZhangX, YuL, XuH (2015) Calcium signaling in membrane repair.Semin Cell Dev Biol45:24–31

DOI

14
CivjanNR, BayburtTH, SchulerMA, SligarSG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.BioTechniques35:556–560

15
ClaphamDE (2003) TRP channels as cellular sensors.Nature426:517–524

DOI

16
ClaphamDE, RunnelsLW, StrubingC (2001) The TRP ion channel family.Nat Rev Neurosci2:387–396

DOI

17
CollettiGA, KiselyovK (2011) Trpml1.Adv Exp Med Biol704:209–219

DOI

18
DongXP, ShenD, WangX, DawsonT, LiX, ZhangQ, ChengX, ZhangY, WeismanLS, DellingM (2010a) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca (2+) release channels in the endolysosome.Nat Commun1:38

DOI

19
DongXP, Wang X, XuHX (2010b) TRP channels of intracellular membranes.Journal of Neurochemistry113:313–328

DOI

20
EmsleyP, LohkampB, Scott WG, CowtanK (2010) Features and development of Coot.Acta Crystallogr D Biol Crystallogr66:486–501

DOI

21
EverettKV (2011) Transient receptor potential genes and human inherited disease.Adv Exp Med Biol704:1011–1032

DOI

22
FlockerziV (2007) An introduction on TRP channels.Handb Exp Pharmacol179:1–19

DOI

23
GaoY, CaoE, JuliusD, ChengY (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.Nature534:347–351

DOI

24
GeesM, OwsianikG, NiliusB, VoetsT (2012) TRP channels.Compr Physiol2:563–608

DOI

25
GriebenM, PikeAC, ShintreCA, VenturiE, El-AjouzS, TessitoreA, ShresthaL, MukhopadhyayS, MahajanP, ChalkR (2017) Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2).Nat Struct Mol Biol24:114–122

DOI

26
HanCY, WangXL (2008) Recent advances on TRP channels.Sheng Li Ke Xue Jin Zhan39:27–32

27
HofherrA, WagnerC, FedelesS, SomloS, KottgenM (2014) N-glycosylation determines the abundance of the transient receptor potential channel TRPP2.J Biol Chem289:14854–14867

DOI

28
HuynhKW, CohenMR, JiangJ, SamantaA, LodowskiDT, ZhouZH, Moiseenkova-BellVY (2016) Structure of the full-length TRPV2 channel by cryo-EM.Nat Commun7:11130

DOI

29
JinP, BulkleyD, GuoY, ZhangW, GuoZ, HuynhW, WuS, MeltzerS, ChengT, JanLY (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC.Nature547:118–122

DOI

30
KimaniusD, ForsbergBO, ScheresSH, LindahlE (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2.Elife. doi:10.7554/eLife.18722

DOI

31
KiselyovK, ChenJ, RbaibiY, OberdickD, Tjon-Kon-SangS, ShcheynikovN, MuallemS, SoyomboA (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage.The Journal of biological chemistry280:43218–43223

DOI

32
KucukelbirA, SigworthFJ, TagareHD (2014) Quantifying the local resolution of cryo-EM density maps.Nat Methods11:63–65

DOI

33
LiX, MooneyP, ZhengS, BoothCR, BraunfeldMB, GubbensS, AgardDA, ChengY (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.Nat Methods10:584–590

DOI

34
LiX, ZhengS, AgardDA, ChengY (2015) Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage.J Struct Biol192:174–178

DOI

35
LiM, ZhangWK, BenvinNM, ZhouX, SuD, LiH, WangS, MichailidisIE, TongL, LiX (2017) Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel.Nat Struct Mol Biol24:205–213

DOI

36
LongSB, CampbellEB, MackinnonR (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.Science309:897–903

DOI

37
MinkeB (2006) TRP channels and Ca2+ signaling.Cell Calcium40:261–275

DOI

38
PaulsenCE, ArmacheJP, GaoY, ChengY, JuliusD (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms.Nature525:552

DOI

39
PedersenSF, OwsianikG, NiliusB (2005) TRP channels: an overview.Cell Calcium38:233–252

DOI

40
PettersenEF, GoddardTD, HuangCC, CouchGS, GreenblattDM, MengEC, FerrinTE (2004) UCSF Chimera–a visualization system for exploratory research and analysis.J Comput Chem25:1605–1612

DOI

41
PuertollanoR, KiselyovK (2009) TRPMLs: in sickness and in health.Am J Physiol Renal Physiol296:F1245–F1254

DOI

42
QianF, Noben-TrauthK (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2).Pflugers Arch451:277–285

DOI

43
RamseyIS, DellingM, ClaphamDE (2006) An introduction to TRP channels.Annu Rev Physiol68:619–647

DOI

44
RitchieTK, GrinkovaYV, BayburtTH, DenisovIG, ZolnerciksJK, AtkinsWM, SligarSG (2009) Chapter 11—reconstitution of membrane proteins in phospholipid bilayer nanodiscs.Methods Enzymol464:211–231

DOI

45
RohouA, GrigorieffN (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs.J Struct Biol192:216–221

DOI

46
SamieM, WangX, ZhangX, GoschkaA, LiX, ChengX, GreggE, AzarM, ZhuoY, GarrityAG (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.Dev Cell26:511–524

DOI

47
ScheresSH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination.J Struct Biol180:519–530

DOI

48
ScheresSH, ChenS (2012) Prevention of overfitting in cryo-EM structure determination.Nat Methods9:853–854

DOI

49
ShaikhTR, GaoH, BaxterWT, AsturiasFJ, BoissetN, LeithA, FrankJ (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs.Nat Protoc3:1941–1974

DOI

50
ShenPS, YangX, DeCaenPG, LiuX, BulkleyD, ClaphamDE, CaoE (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs.Cell167(763–773):e711

DOI

51
SmartOS, NeduvelilJG, WangX, WallaceBA, SansomMS (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models.J Mol Graph14(354–360):376

DOI

52
SunM, GoldinE, StahlS, FalardeauJL, KennedyJC, AciernoJS Jr, BoveC, KaneskiCR, NagleJ, BromleyMC (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel.Hum Mol Genet9:2471–2478

DOI

53
VenkatachalamK, MontellC (2007) TRP channels.Annu Rev Biochem76:387–417

DOI

54
VenkatachalamK, WongCO, ZhuMX (2015) The role of TRPMLs in endolysosomal trafficking and function.Cell Calcium58:48–56

DOI

55
VergarajaureguiS, PuertollanoR (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic7:337–353

DOI

56
WakabayashiK, GustafsonAM, SidranskyE, GoldinE (2011) Mucolipidosis type IV: an update.Mol Genet Metab104:206–213

DOI

57
Waller-EvansH, Lloyd-EvansE (2015) Regulation of TRPML1 function.Biochem Soc Trans43:442–446

DOI

58
WangW, ZhangX, GaoQ, XuH (2014) TRPML1: an ion channel in the lysosome.Handb Exp Pharmacol222:631–645

DOI

59
WeitzR, KohnG (1988) Clinical spectrum of mucolipidosis type IV.Pediatrics81:602–603

60
WilkesM, MadejMG, KreuterL, RhinowD, HeinzV, De SanctisS, RuppelS, RichterRM, JoosF, GriebenM (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2.Nat Struct Mol Biol24:123–130

DOI

61
XuH, DellingM, LiL, DongX, ClaphamDE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice.Proc Natl Acad Sci USA104:18321–18326

DOI

62
ZeeviDA, FrumkinA, BachG (2007) TRPML and lysosomal function.Biochim Biophys Acta1772:851–858

DOI

63
ZhangY (2008) I-TASSER server for protein 3D structure prediction.BMC Bioinform9:40

DOI

64
ZhangX, LiX, XuH (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity.Proc Natl Acad Sci USA109:11384–11389

DOI

65
ZhengSQ, PalovcakE, ArmacheJP, VerbaKA, ChengY, AgardDA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.Nat Methods14:331–332

DOI

Outlines

/