Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism

Sensen Zhang, Ningning Li, Wenwen Zeng, Ning Gao, Maojun Yang

PDF(3454 KB)
PDF(3454 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (11) : 834-847. DOI: 10.1007/s13238-017-0476-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism

Author information +
History +

Abstract

TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca2+ permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a “move upward” motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca2+, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.

Keywords

mTRPML1 / mucolipidosis type IV / structual comparisons / combined regulation mechanism

Cite this article

Download citation ▾
Sensen Zhang, Ningning Li, Wenwen Zeng, Ning Gao, Maojun Yang. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell, 2017, 8(11): 834‒847 https://doi.org/10.1007/s13238-017-0476-5

References

[1]
AhujaM, ParkS, ShinDM, MuallemS (2016) TRPML1 as lysosomal fusion guard.Channels (Austin)10:261–263
CrossRef Google scholar
[2]
AppelqvistH, WasterP, KagedalK, OllingerK (2013) The lysosome: from waste bag to potential therapeutic target.J Mol Cell Biol5:214–226
CrossRef Google scholar
[3]
BachG (2005) Mucolipin 1: endocytosis and cation channel–a review.Pflugers Arch451:313–317
CrossRef Google scholar
[4]
BargalR, AvidanN, Ben-AsherE, OlenderZ, ZeiglerM, FrumkinA, Raas-RothschildA, GlusmanG, LancetD, BachG (2000) Identification of the gene causing mucolipidosis type IV.Nat Genet26:118–123
CrossRef Google scholar
[5]
BargalR, AvidanN, OlenderT, Ben AsherE, ZeiglerM, Raas-RothschildA, FrumkinA, Ben-YosephO, FriedlenderY, Lancet D (2001) Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population.Hum Mutat17:397–402
CrossRef Google scholar
[6]
BenemeiS, PatacchiniR, TrevisaniM, GeppettiP (2015) TRP channels.Curr Opin Pharmacol22:18–23
CrossRef Google scholar
[7]
BermanER, LivniN, ShapiraE, MerinS, LevijIS (1974) Congenital corneal clouding with abnormal systemic storage bodies: a new variant of mucolipidosis.J Pediatr84:519–526
CrossRef Google scholar
[8]
BundeySE, AshenhurstEM, DorstJP (1974) Mucolipidosis, probably a new variant with joint deformity and peripheral nerve dysfunction.Birth Defects Orig Artic Ser10:484–490
[9]
CaoE, LiaoM, ChengY, JuliusD (2013) TRPV1 structures in distinct conformations reveal activation mechanisms.Nature504:113–118
CrossRef Google scholar
[10]
ChenS, McMullanG, FaruqiAR, MurshudovGN, ShortJM, ScheresSH, HendersonR (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.Ultramicroscopy135:24–35
CrossRef Google scholar
[11]
ChenCC, KellerM, HessM, SchiffmannR, UrbanN, WolfgardtA, SchaeferM, BracherF, BielM,Wahl-SchottC (2014) A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV.Nat Commun5:4681
CrossRef Google scholar
[12]
ChengX, ShenD, SamieM, XuH (2010) Mucolipins: Intracellular TRPML1-3 channels.FEBS Lett584:2013–2021
CrossRef Google scholar
[13]
ChengX, ZhangX, YuL, XuH (2015) Calcium signaling in membrane repair.Semin Cell Dev Biol45:24–31
CrossRef Google scholar
[14]
CivjanNR, BayburtTH, SchulerMA, SligarSG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.BioTechniques35:556–560
[15]
ClaphamDE (2003) TRP channels as cellular sensors.Nature426:517–524
CrossRef Google scholar
[16]
ClaphamDE, RunnelsLW, StrubingC (2001) The TRP ion channel family.Nat Rev Neurosci2:387–396
CrossRef Google scholar
[17]
CollettiGA, KiselyovK (2011) Trpml1.Adv Exp Med Biol704:209–219
CrossRef Google scholar
[18]
DongXP, ShenD, WangX, DawsonT, LiX, ZhangQ, ChengX, ZhangY, WeismanLS, DellingM (2010a) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca (2+) release channels in the endolysosome.Nat Commun1:38
CrossRef Google scholar
[19]
DongXP, Wang X, XuHX (2010b) TRP channels of intracellular membranes.Journal of Neurochemistry113:313–328
CrossRef Google scholar
[20]
EmsleyP, LohkampB, Scott WG, CowtanK (2010) Features and development of Coot.Acta Crystallogr D Biol Crystallogr66:486–501
CrossRef Google scholar
[21]
EverettKV (2011) Transient receptor potential genes and human inherited disease.Adv Exp Med Biol704:1011–1032
CrossRef Google scholar
[22]
FlockerziV (2007) An introduction on TRP channels.Handb Exp Pharmacol179:1–19
CrossRef Google scholar
[23]
GaoY, CaoE, JuliusD, ChengY (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.Nature534:347–351
CrossRef Google scholar
[24]
GeesM, OwsianikG, NiliusB, VoetsT (2012) TRP channels.Compr Physiol2:563–608
CrossRef Google scholar
[25]
GriebenM, PikeAC, ShintreCA, VenturiE, El-AjouzS, TessitoreA, ShresthaL, MukhopadhyayS, MahajanP, ChalkR (2017) Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2).Nat Struct Mol Biol24:114–122
CrossRef Google scholar
[26]
HanCY, WangXL (2008) Recent advances on TRP channels.Sheng Li Ke Xue Jin Zhan39:27–32
[27]
HofherrA, WagnerC, FedelesS, SomloS, KottgenM (2014) N-glycosylation determines the abundance of the transient receptor potential channel TRPP2.J Biol Chem289:14854–14867
CrossRef Google scholar
[28]
HuynhKW, CohenMR, JiangJ, SamantaA, LodowskiDT, ZhouZH, Moiseenkova-BellVY (2016) Structure of the full-length TRPV2 channel by cryo-EM.Nat Commun7:11130
CrossRef Google scholar
[29]
JinP, BulkleyD, GuoY, ZhangW, GuoZ, HuynhW, WuS, MeltzerS, ChengT, JanLY (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC.Nature547:118–122
CrossRef Google scholar
[30]
KimaniusD, ForsbergBO, ScheresSH, LindahlE (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2.Elife. doi:10.7554/eLife.18722
CrossRef Google scholar
[31]
KiselyovK, ChenJ, RbaibiY, OberdickD, Tjon-Kon-SangS, ShcheynikovN, MuallemS, SoyomboA (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage.The Journal of biological chemistry280:43218–43223
CrossRef Google scholar
[32]
KucukelbirA, SigworthFJ, TagareHD (2014) Quantifying the local resolution of cryo-EM density maps.Nat Methods11:63–65
CrossRef Google scholar
[33]
LiX, MooneyP, ZhengS, BoothCR, BraunfeldMB, GubbensS, AgardDA, ChengY (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.Nat Methods10:584–590
CrossRef Google scholar
[34]
LiX, ZhengS, AgardDA, ChengY (2015) Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage.J Struct Biol192:174–178
CrossRef Google scholar
[35]
LiM, ZhangWK, BenvinNM, ZhouX, SuD, LiH, WangS, MichailidisIE, TongL, LiX (2017) Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel.Nat Struct Mol Biol24:205–213
CrossRef Google scholar
[36]
LongSB, CampbellEB, MackinnonR (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.Science309:897–903
CrossRef Google scholar
[37]
MinkeB (2006) TRP channels and Ca2+ signaling.Cell Calcium40:261–275
CrossRef Google scholar
[38]
PaulsenCE, ArmacheJP, GaoY, ChengY, JuliusD (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms.Nature525:552
CrossRef Google scholar
[39]
PedersenSF, OwsianikG, NiliusB (2005) TRP channels: an overview.Cell Calcium38:233–252
CrossRef Google scholar
[40]
PettersenEF, GoddardTD, HuangCC, CouchGS, GreenblattDM, MengEC, FerrinTE (2004) UCSF Chimera–a visualization system for exploratory research and analysis.J Comput Chem25:1605–1612
CrossRef Google scholar
[41]
PuertollanoR, KiselyovK (2009) TRPMLs: in sickness and in health.Am J Physiol Renal Physiol296:F1245–F1254
CrossRef Google scholar
[42]
QianF, Noben-TrauthK (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2).Pflugers Arch451:277–285
CrossRef Google scholar
[43]
RamseyIS, DellingM, ClaphamDE (2006) An introduction to TRP channels.Annu Rev Physiol68:619–647
CrossRef Google scholar
[44]
RitchieTK, GrinkovaYV, BayburtTH, DenisovIG, ZolnerciksJK, AtkinsWM, SligarSG (2009) Chapter 11—reconstitution of membrane proteins in phospholipid bilayer nanodiscs.Methods Enzymol464:211–231
CrossRef Google scholar
[45]
RohouA, GrigorieffN (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs.J Struct Biol192:216–221
CrossRef Google scholar
[46]
SamieM, WangX, ZhangX, GoschkaA, LiX, ChengX, GreggE, AzarM, ZhuoY, GarrityAG (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.Dev Cell26:511–524
CrossRef Google scholar
[47]
ScheresSH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination.J Struct Biol180:519–530
CrossRef Google scholar
[48]
ScheresSH, ChenS (2012) Prevention of overfitting in cryo-EM structure determination.Nat Methods9:853–854
CrossRef Google scholar
[49]
ShaikhTR, GaoH, BaxterWT, AsturiasFJ, BoissetN, LeithA, FrankJ (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs.Nat Protoc3:1941–1974
CrossRef Google scholar
[50]
ShenPS, YangX, DeCaenPG, LiuX, BulkleyD, ClaphamDE, CaoE (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs.Cell167(763–773):e711
CrossRef Google scholar
[51]
SmartOS, NeduvelilJG, WangX, WallaceBA, SansomMS (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models.J Mol Graph14(354–360):376
CrossRef Google scholar
[52]
SunM, GoldinE, StahlS, FalardeauJL, KennedyJC, AciernoJS Jr, BoveC, KaneskiCR, NagleJ, BromleyMC (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel.Hum Mol Genet9:2471–2478
CrossRef Google scholar
[53]
VenkatachalamK, MontellC (2007) TRP channels.Annu Rev Biochem76:387–417
CrossRef Google scholar
[54]
VenkatachalamK, WongCO, ZhuMX (2015) The role of TRPMLs in endolysosomal trafficking and function.Cell Calcium58:48–56
CrossRef Google scholar
[55]
VergarajaureguiS, PuertollanoR (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic7:337–353
CrossRef Google scholar
[56]
WakabayashiK, GustafsonAM, SidranskyE, GoldinE (2011) Mucolipidosis type IV: an update.Mol Genet Metab104:206–213
CrossRef Google scholar
[57]
Waller-EvansH, Lloyd-EvansE (2015) Regulation of TRPML1 function.Biochem Soc Trans43:442–446
CrossRef Google scholar
[58]
WangW, ZhangX, GaoQ, XuH (2014) TRPML1: an ion channel in the lysosome.Handb Exp Pharmacol222:631–645
CrossRef Google scholar
[59]
WeitzR, KohnG (1988) Clinical spectrum of mucolipidosis type IV.Pediatrics81:602–603
[60]
WilkesM, MadejMG, KreuterL, RhinowD, HeinzV, De SanctisS, RuppelS, RichterRM, JoosF, GriebenM (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2.Nat Struct Mol Biol24:123–130
CrossRef Google scholar
[61]
XuH, DellingM, LiL, DongX, ClaphamDE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice.Proc Natl Acad Sci USA104:18321–18326
CrossRef Google scholar
[62]
ZeeviDA, FrumkinA, BachG (2007) TRPML and lysosomal function.Biochim Biophys Acta1772:851–858
CrossRef Google scholar
[63]
ZhangY (2008) I-TASSER server for protein 3D structure prediction.BMC Bioinform9:40
CrossRef Google scholar
[64]
ZhangX, LiX, XuH (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity.Proc Natl Acad Sci USA109:11384–11389
CrossRef Google scholar
[65]
ZhengSQ, PalovcakE, ArmacheJP, VerbaKA, ChengY, AgardDA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.Nat Methods14:331–332
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(3454 KB)

Accesses

Citations

Detail

Sections
Recommended

/