LETTER

Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis

  • Min Liu 1,2 ,
  • Xuejun C. Zhang , 1,2
Expand
  • 1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Published date: 23 Aug 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Cite this article

Min Liu , Xuejun C. Zhang . Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis[J]. Protein & Cell, 2017 , 8(8) : 623 -627 . DOI: 10.1007/s13238-017-0417-3

1
CummingsMD, FarnumMA, NelenMI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen11:854–863

DOI

2
EdaS, YoneyamaH, NakaeT (2003) Function of the MexB effluxtransporter divided into two halves. Biochemistry42:7238–7244

DOI

3
Eicher,T., Seeger,M.A., Anselmi,C., Zhou,W., Brandstatter,L., Verrey,F., Diederichs,K., Faraldo-Gomez,J.D., and Pos,K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3.

DOI

4
GuanL, NakaeT (2001) Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa. J Bacteriol183:1734–1739

DOI

5
JeongH, KimJS, SongS, ShigematsuH, YokoyamaT, HyunJ, HaNC (2016) Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheellike Interaction between AcrA and TolC. Structure24:272–276

DOI

6
MouritsenOG, BloomM (1984) Mattress model of lipid-protein interactions in membranes. Biophys J46:141–153

DOI

7
MurakamiS, NakashimaR, YamashitaE, MatsumotoT, YamaguchiA (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443:173–179

DOI

8
MurakamiS, NakashimaR, YamashitaE, YamaguchiA (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature419:587–593

DOI

9
SeegerMA, SchiefnerA, EicherT, VerreyF, DiederichsK, PosKM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science313:1295–1298

DOI

10
SeegerMA, von BallmoosC, VerreyF, PosKM (2009) Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry48:5801–5812

DOI

11
SennhauserG, AmstutzP, BriandC, StorcheneggerO, GrutterMG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol5:e7

DOI

12
TakatsukaY, NikaidoH (2006) Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol188:7284–7289

DOI

13
YamaguchiA, NakashimaR, SakuraiK (2015) Structural basis of RND-type multidrug exporters. Front Microbiol6:327

DOI

14
ZhangXC, CaoC, ZhouY, ZhaoY (2014) Proton transfer-mediated GPCR activation. Protein. Cell6:12–17

DOI

15
ZhangXC, ZhaoY, HengJ, JiangD (2015) Energy coupling mechanisms of MFS transporters. Protein Sci24:1560–1579

DOI

Outlines

/