Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis
Min Liu, Xuejun C. Zhang
Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis
[1] |
CummingsMD, FarnumMA, NelenMI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen11:854–863
CrossRef
Google scholar
|
[2] |
EdaS, YoneyamaH, NakaeT (2003) Function of the MexB effluxtransporter divided into two halves. Biochemistry42:7238–7244
CrossRef
Google scholar
|
[3] |
Eicher,T., Seeger,M.A., Anselmi,C., Zhou,W., Brandstatter,L., Verrey,F., Diederichs,K., Faraldo-Gomez,J.D., and Pos,K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3.
CrossRef
Google scholar
|
[4] |
GuanL, NakaeT (2001) Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa. J Bacteriol183:1734–1739
CrossRef
Google scholar
|
[5] |
JeongH, KimJS, SongS, ShigematsuH, YokoyamaT, HyunJ, HaNC (2016) Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheellike Interaction between AcrA and TolC. Structure24:272–276
CrossRef
Google scholar
|
[6] |
MouritsenOG, BloomM (1984) Mattress model of lipid-protein interactions in membranes. Biophys J46:141–153
CrossRef
Google scholar
|
[7] |
MurakamiS, NakashimaR, YamashitaE, MatsumotoT, YamaguchiA (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443:173–179
CrossRef
Google scholar
|
[8] |
MurakamiS, NakashimaR, YamashitaE, YamaguchiA (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature419:587–593
CrossRef
Google scholar
|
[9] |
SeegerMA, SchiefnerA, EicherT, VerreyF, DiederichsK, PosKM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science313:1295–1298
CrossRef
Google scholar
|
[10] |
SeegerMA, von BallmoosC, VerreyF, PosKM (2009) Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry48:5801–5812
CrossRef
Google scholar
|
[11] |
SennhauserG, AmstutzP, BriandC, StorcheneggerO, GrutterMG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol5:e7
CrossRef
Google scholar
|
[12] |
TakatsukaY, NikaidoH (2006) Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol188:7284–7289
CrossRef
Google scholar
|
[13] |
YamaguchiA, NakashimaR, SakuraiK (2015) Structural basis of RND-type multidrug exporters. Front Microbiol6:327
CrossRef
Google scholar
|
[14] |
ZhangXC, CaoC, ZhouY, ZhaoY (2014) Proton transfer-mediated GPCR activation. Protein. Cell6:12–17
CrossRef
Google scholar
|
[15] |
ZhangXC, ZhaoY, HengJ, JiangD (2015) Energy coupling mechanisms of MFS transporters. Protein Sci24:1560–1579
CrossRef
Google scholar
|
/
〈 | 〉 |