Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis

Min Liu, Xuejun C. Zhang

PDF(1021 KB)
PDF(1021 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (8) : 623-627. DOI: 10.1007/s13238-017-0417-3
LETTER
LETTER

Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis

Author information +
History +

Cite this article

Download citation ▾
Min Liu, Xuejun C. Zhang. Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis. Protein Cell, 2017, 8(8): 623‒627 https://doi.org/10.1007/s13238-017-0417-3

References

[1]
CummingsMD, FarnumMA, NelenMI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen11:854–863
CrossRef Google scholar
[2]
EdaS, YoneyamaH, NakaeT (2003) Function of the MexB effluxtransporter divided into two halves. Biochemistry42:7238–7244
CrossRef Google scholar
[3]
Eicher,T., Seeger,M.A., Anselmi,C., Zhou,W., Brandstatter,L., Verrey,F., Diederichs,K., Faraldo-Gomez,J.D., and Pos,K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3.
CrossRef Google scholar
[4]
GuanL, NakaeT (2001) Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa. J Bacteriol183:1734–1739
CrossRef Google scholar
[5]
JeongH, KimJS, SongS, ShigematsuH, YokoyamaT, HyunJ, HaNC (2016) Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheellike Interaction between AcrA and TolC. Structure24:272–276
CrossRef Google scholar
[6]
MouritsenOG, BloomM (1984) Mattress model of lipid-protein interactions in membranes. Biophys J46:141–153
CrossRef Google scholar
[7]
MurakamiS, NakashimaR, YamashitaE, MatsumotoT, YamaguchiA (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443:173–179
CrossRef Google scholar
[8]
MurakamiS, NakashimaR, YamashitaE, YamaguchiA (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature419:587–593
CrossRef Google scholar
[9]
SeegerMA, SchiefnerA, EicherT, VerreyF, DiederichsK, PosKM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science313:1295–1298
CrossRef Google scholar
[10]
SeegerMA, von BallmoosC, VerreyF, PosKM (2009) Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry48:5801–5812
CrossRef Google scholar
[11]
SennhauserG, AmstutzP, BriandC, StorcheneggerO, GrutterMG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol5:e7
CrossRef Google scholar
[12]
TakatsukaY, NikaidoH (2006) Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol188:7284–7289
CrossRef Google scholar
[13]
YamaguchiA, NakashimaR, SakuraiK (2015) Structural basis of RND-type multidrug exporters. Front Microbiol6:327
CrossRef Google scholar
[14]
ZhangXC, CaoC, ZhouY, ZhaoY (2014) Proton transfer-mediated GPCR activation. Protein. Cell6:12–17
CrossRef Google scholar
[15]
ZhangXC, ZhaoY, HengJ, JiangD (2015) Energy coupling mechanisms of MFS transporters. Protein Sci24:1560–1579
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(1021 KB)

Accesses

Citations

Detail

Sections
Recommended

/